Obtención y caracterización de sistemas microemulsificados que contienen Alkali-Surfactant-Polymer (ASP) para su aplicación en recuperación avanzada de aceite

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i5.14807

Palabras clave:

Sistemas microemulsificados; ASP; Reología de fluidos.

Resumen

Los fluidos en términos de comportamiento reológico se pueden clasificar en newtonianos y newtonianos. Se llaman newtonianos, los fluidos que tienen una viscosidad única y absoluta, por lo que se encuentran entre la vanguardia y las tasas impositivas constantes. En la industria petrolera, la mayoría de los fluidos no presentan un comportamiento newtoniano, como microemulsiones, petróleo y soluciones poliméricas. Para comprender el comportamiento de los fluidos químicos, es necesario analizar algunos parámetros para interpretar sus propiedades y aplicabilidad. En este contexto, el presente trabajo tiene como objetivo obtener y caracterizar sistemas microemulsificados que contienen álcali, tensioactivo y polímero (ASP) con el objetivo de su aplicabilidad en la recuperación avanzada de petróleo. Así, se obtuvieron cinco sistemas microemulsificados constituidos por aceite de coco saponificado (tensioactivo), Butan-1-ol (co- tensioactivo), queroseno (fase aceitosa), Na2CO3 (álcali), agua y diferentes porcentajes del polímero. Los sistemas se caracterizaron mediante análisis de diámetro de partícula, tensión superficial, viscosidad y comportamiento reológico utilizando modelos matemáticos. Los tamaños de las gotas mostraron valores característicos de agregados micelares. La tensión superficial mostró un pequeño aumento al aumentar el porcentaje de polímero en la microemulsión. A través del estudio reológico se pudo observar que los valores experimentales se ajustaron mejor al modelo de Ostwald de Waele. Fue posible calcular la viscosidad aparente de los sistemas y observar un cambio creciente en los valores de viscosidad a medida que aumentaba el porcentaje de polímero en el sistema, resultado de gran interés con respecto a la recuperación avanzada de aceite.

Citas

Aiolfi, C. S., & Romero, O. J. (2019). Bibliometric analysis of the injection of polymeric solutions in oil recovery. Research, Society and Development, 8(7), e35871107. https://doi.org/10.33448/rsd-v8i7.1107

Aitkulov, A., Dao, E., & Mohanty, K. K. (2018). Asp flood after a polymer flood vs. asp flood after a water flood. In: SPE Improved Oil Recovery Conference, Tulsa. 10.2118/190271-MS.

Al-Murayri, M. T., Kamal, D. S., Suniga, P., Fortenberry, R., Britton, C., Pope, G. A., & Upamali, K. A. N. (2017, setembro). Improving ASP Performance in Carbonate Reservoir Rocks Using Hybrid-Alkali. In: SPE Annual Technical Conference and Exhibition. San Antonio, Texas, USA. https://doi.org/10.2118/187213-MS

Borges, S. M. S., Almeida, P. M. M., Lima, A. M. V., Musse, A. P. S., & Quintella, C. M. (2007). Secondary recovery of heavy oil and completion of mature field reservoirs using the by-product (crude glycerin) from biodiesel production. Boletim Técnico da Produção de Petróleo, 2, 131-152.

http://www.eventoexpress.com.br/cd-36rasbq/resumos/T1365-1.pdf

Castro Dantas, T. N., Santanna, V. C., Souza, T. T. C., Lucas, C. R. S., & Dantas Neto, A. A. (2018). Microemulsions and nanoemulsions applied to well stimulation and enhanced oil recovery (EOR). Brazilian Journal of Petroleum and Gas, 12(4), 25-265.

http://dx.doi.org/10.5419/bjpg2018-0023.

Castro Dantas, T. N., Soares, A. P. J., Wanderley Neto, A. O., & Dantas Neto, A. A. (2014). Implementing new microemulsion systems in wettability inversion and oil recovery from carbonate reservoirs. Energy Fuels, 28(11), 6749–6759.

https://pubs.acs.org/doi/abs/10.1021/ef501697x

Castro Dantas, T. N., Souza, T. T. C., Dantas Neto, A. A., Moura, M. C. P. D. A., & Barros Neto, E. L. (2017). Experimental study of nanofluids applied in EOR processes. J. Surfactants Deterg, 20(5), p.1095–1104. https://link.springer.com/article/10.1007/s11743-017-1992-2.

Chen, G., Tian, Y., Zhao, X, & Li, X. (2012). Optimization of the asp flooding injection pattern for sub-layers in daqing oil field. Shiyou Xuebao. Acta Petrolei Sinica, 33, p.459–464. https://www.researchgate.net/publication/286983829_Optimization_of_the_ASP_flooding_injection_pattern_for_sub-layers_in_Daqing_oilfield

Cheng, X., Kleppe, J., & Torsaeter, O. (2018, abril). Simulation study of effects of surfactant properties on surfactante enhanced oil recovery in fractured reservoirs. In: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam. 10.2118/192430-MS.

Costa, S. E. D., Barros Neto, E. L., Oliveira, M. C. A., & Santos, J. S. C. (2017). Mechanical and petrophysical analysis of synthetic sandstone for enhanced oil recovery applications. Brazilian Journal of Petroleum and Gas, 11, 131-140.

http://dx.doi.org/10.5419/bjpg2017-0011

Curbelo, F. D. S., Garnica, A. I. C., Nascimento, B. S. C., Leal, G. L. R., Tertuliano, T. M., & Da Silva, R. R. (2021). Influence of the oleic phase and co-surfactante addition in non-ionic micromulsified systems. Research, Society and Development, 10(2), e58410212902.https://doi.org/10.33448/rsd-v10i2.12902

Fox, R. W., & Mcdonald, A. T. Introdução à mecânica dos fluidos, LTC. 1998.

Garnica, A. I. C., Curbelo, F. D. S., Queiroz, I. X., Araújo. E. A., Sousa, R. P. F., Paiva, E. M., Braga, G. S., & Araújo, E. A. (2021). Development of microemulsions as a lubricant additive in drilling fluid. Research, Society and Development, 9(7), e212973703. https://doi.org/10.33448/rsd-v9i7.3703.

Gomes, E. A. D. S., Dantas Neto, A. A., Barros Neto, E. L., Lima, F. M. Soares, R. G. F., & Nascimento, R. E. D. S. (2007). Application of rheological models in a system: paraffin/solvente/surfactant. In:4° PDPETRO, Campinas, SP: ABPG. http://www.portalabpg.org.br/PDPetro/4/resum os/4PDPETRO_2_3_0197-1.pdf.

Gradzielski, M. (2008). Recent developments in the characterisation of microemulsions. Current Opinion in Colloid and Interface Science, 13(4), 263–269.

https://doi.org/10.1016/j.cocis.2007.10.006.

Huang, W., Dong, Y., Zhao, J., Liu, X., Fan, Y., Bai, H., & Hao, J. (2019, outubro) A/SP alternating flooding, a modifiedasp flooding technology. In: SPE Russian Petroleum Technology Conference, Moscow. 10.2118/196768-MS.

Gurgel, A. (2004). Characterisation of Novel Self-assembled Systems and Applications in Chemical Reactions.

https://books.google.com.br/books?id=mGnOxQEACAAJ.

Hendraningrat, L., Li, S., & Torsaeter, O. (2013). A coreflood investigation of nanofluid enhanced oil recovery. Journal of Petroleum Science and Engineering, 111, p128–38. 10.1016/j.petrol.2013.07.003.

Huang, B., Li, X., Fu, C., Wang, Y., & Cheng, H. (2019). Study Rheological Behavior of Polymer Solution in Different-Medium-Injection-Tools. Polymers, 11(2), p319. https://doi.org/10.3390/polym11020319

Humphry, K. J., Lee, V. D., Southwick, J. G., Ineke, E. M., & Batenburg, D. W. (2013, setembro) Microemulsion flow in porous media: Implications for alkaline-surfactant-polymer flooding. In: SPE Enhanced Oil Recovery Conference, Kuala Lumpur. 10.2118/165233-MS.

Lucena Neto, F. (2005). Study of the influence of surfactants in micro emulsified systems in the extraction of gallium and aluminum. Doctoral thesis (Chemical engineering) – PPGEQ - Federal University of Rio Grande do Norte.

Machado, J. C. V. (2002). Rheology and fluid flow: emphasis on the oil industry. Interciência. https://www.editorainterciencia.com.br/?pg=prodDetalhado.asp

Mendham, J., Denney, R. C., Barnes, J. D., & Thomas, M. (1992). Vogel: Quantitative Chemical Analysis. (5a ed.), Editora Guanabara.

Oliveira, K. C., Juviniano, H. B. M., Hilario, L. S., Dantas, T. N. C., & Silva, D. R. (2017). Influence of glycerin P.A. in the solution of surfactants applied to EOR. In: 9 PDPetro, 2017, Maceió - AL. CD-Rom do 9 PDPetro. Natal - RN: ABPG. http://www.portalabpg.org.br/site_portugues/anais/anais9/repos itorio/trabalho/470509300820178524.pdf.

Ribeiro, L. S., Dantas, T. N. C., Dantas Neto, A. A., Melo, K. C., Moura, P. A., & Aum, P. T. P. (2016). The use of produced water in water-based drilling fluids: Influence of calcium and magnesium concentrations. Braziliam Journal of petrolium and gas, 10(4). http://dx.doi.org/10.5419/bjpg2016-0019.

Rossi, C.G.F.T, Castro Dantas, T. N. C., & Neto Dantas, A. A. (2006). Surfactants: A basic approach and perspective of industrial applicability. Revista Universidade Rural, Série Ciências Exatas e da Terra, 25, 233-245.

Soares, A. P. J., Dantas, T. N. C., & Dantas Neto, A. A. (2011). Application of microemulsion in the recovery of oil from carbonate reservoirs. In: 6º Congresso Brasileiro de P&D em Petróleo e Gás, Florianópolis. 6º PDPETRO. http://www.portalabpg.org.br/site_portugues/anais/anais9/repo sitorio/trabalho/103007280820178727.pdf

Sharma, H., Dufour, S., Arachchilage, G. W. P. P., Weerasooriya, U., Pope, G. A., & Mohanty. K. (2015). Alternative álcalis for asp flooding in na hydrite containing oil reservoirs. Fuel. 140, 407-420. https://doi.org/10.1155/2020/2829565.

Shafiee Najafi, S. A., Kamranfar, P., Madani, M., Shadadeh, M., & Jamialahmadi, M. (2017). Experimental and theoretical investigation of CTAB microemulsion viscosity in the chemical enhanced oil recovery process. Journal of Molecular Liquids. 232:382–9.

1016/j.molliq.2017.02.092.

Sharma, T., & Sangwai, J. S. (2017). Silica nanofluids in polyacrylamide with and without surfactant: viscosity, surface tension, and interfacial tension with liquid paraffin. Journal of Petroleum Science and Engineering, 152, p575-585. 10.1016/j.petrol.2017.01.039.

Sheng, J. (2011) Modern Chemical Enhanced Oil Recovery: Theory and Practice. Elsevier Science, 2011. https://books.google.com.br/books?id=etgfFzWrIosC.

Silva, D. C., Lucas, C. R., Juviniano, H. B. M., Moura, M. C. P. A., Castro Dantas, T. N., & Dantas Neto, A. A. (2019). Analysis of the use of microemulsion systems to treat petroleum sludge from a water flotation unit. Journal of Environmental Chemical Engineering, 7.

https://doi.org/10.1016/j.jece.2019.102934

Silva, D. C., Lucas, C. R., Juviniano, H. B. M., Moura, M. C. P. A., Castro Dantas, T. N., & Dantas Neto, A. A. (2020). Novel produced water treatment using microemulsion systems to remove oil contents. Journal of Water Process Engineering, 33, 01-07. https://doi.org/10.1016/j.jwpe.2019.101006

Teixeira, E. R. F. (2012). Influence of acrylamide and polyacrylamide in a microemulsified system for application in advanced oil recovery. Master’s dissertation (Chemical engineering) – PPGEQ - Federal University of Rio Grande do Norte.

Veerabhadrappa, S. K., Urbissinova, T. S., Trivedi, J. J., & Ergun, K. (2011, maio). Polymer Screening Criteria for EOR Application - A Rheological Characterization Approach. Paper presented at the SPE Western North American Region Meeting, Anchorage, Alaska, USA. https://doi.org/10.2118/144570-MS.

Viana, F. F. (2013). Oil sludge treatment with microemulsified systems. Master's Dissertation (Chemistry) - PPGQ - Federal University of Rio Grande do Norte. https://repositorio.ufrn.br/jspui/bitstream/123456789/17730/1/FlaviaFV_DISSERT.pdf

Viana, F. F., De Castro Dantas, T. N., Rossi, C. G. G. T., Dantas Neto, A. A., & Silva, M. S. (2015). Aged oil sludge solubilization using new microemulsion systems: Design of experiments. Journal os Molecular Liquids. 210, 44-50. 10.1016/j.molliq.2015.02.042.

Volokitin, Y., Sakhibgareev, R. S. M., & Nurieva, O. (2012, outubro). Chemical and analytical work in support of west salym field enhanced oil recovery project (ASP). In: SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition, Moscow. 10.2118/162067-RU.

Zhong, H., Yang, T., Yin, H., Fu, C., & Lu, J. (2018, setembro). The role of chemicals loss in sandstone formation in asp flooding enhanced oil recovery. In: SPE Annual Technical Conference and Exhibition, Dallas. 10.2118/191545-PA.

Descargas

Publicado

09/05/2021

Cómo citar

ALVES, H. G.; OLIVEIRA, G. V. B. de; VIANA, F. F.; RODRIGUES, M. A. F.; DANTAS NETO, A. A. .; DANTAS, T. N. de C. . Obtención y caracterización de sistemas microemulsificados que contienen Alkali-Surfactant-Polymer (ASP) para su aplicación en recuperación avanzada de aceite. Research, Society and Development, [S. l.], v. 10, n. 5, p. e33010514807, 2021. DOI: 10.33448/rsd-v10i5.14807. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14807. Acesso em: 17 jul. 2024.

Número

Sección

Ingenierías