Métrica utilizando conceptos de química verde para evaluar el uso de productos químicos en los métodos nacionales e internacionales estandarizados para determinar el número de acidez total (NAT)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i5.14894

Palabras clave:

Número de Acidez Total (NAT); Métodos Estandarizados; Índice de Toxicidad; Petróleo; Óleo.

Resumen

Los disolventes orgánicos se utilizan ampliamente en determinaciones analíticas. Debido al impacto ambiental, se buscan métodos alternativos de análisis, reducción del uso de solventes tóxicos o uso de solventes verdes. Además, los criterios para la selección adecuada de un disolvente para un proceso pueden mejorar en gran medida la sostenibilidad de un análisis. El objetivo de la investigación fue realizar un estudio comparativo de los solventes utilizados en la determinación de la acidez total en aceite en métodos estandarizados nacionales e internacionales. Se evaluaron métodos colorimétricos, potenciométricos y termométricos. Se estableció un índice de toxicidad según la información de peligro descrita en cada ficha de seguridad química, para evaluar los métodos estandarizados. Se evaluaron 13 estándares: 04 nacionales y 09 internacionales. Los resultados mostraron que los métodos estandarizados con mayor índice de impacto ambiental y salud fueron el potenciométrico UOP 565 y el termométrico ASTM D8045. Los métodos con índices más bajos fueron el colorimétrico ASTM D1093 y ABNT NBR 16430. Los productos clasificados como de riesgo para la salud se identificaron en el 44% de las normas evaluadas. Concluimos que el estudio de métodos estandarizados internacionales y nacionales mostró la necesidad de desarrollar métodos para determinar el Número de Acidez Total con el fin de reducir el impacto en la salud del operador y el medio ambiente. El desafío de reemplazar los solventes en métodos estandarizados con productos ecológicos debería guiar el desarrollo de métodos alternativos y sostenibles para el análisis de la acidez en el aceite.

Citas

ABNT NBR 14248:2009. (2009). Produtos de petróleo – Determinação do número de acidez e basicidade – Método do indicador.

ABNT NBR 14448:2013. (2013). Óleos lubrificantes, produtos de petróleo e biodiesel – Determinação do número de acidez pelo método de titulação potenciométrica.

ABNT NBR 14543:2009. (2009). Produtos de petróleo – Determinação do número de acidez por titulação colorimétrica semimicro.

ABNT NBR 14725-2:2019. (2019). Produtos químicos - Informações sobre segurança, saúde e meio ambiente. Parte 2: Sistema de classificação de perigo.

ABNT NBR 16430:2015. (2015). Compostos orgânicos – Determinação da acidez.

Alder, C. M., Hayler, J. D., Henderson, R. K., Redman, A. M., Shukla, L., Shuster, L. E., & Sneddon, H. F. (2016). Updating and further expanding GSK’s solvent sustainability guide. Green Chemistry, 18(13), 3879–3890. https://doi.org/10.1039/C6GC00611F

Alfonsi, K., Colberg, J., Dunn, P. J., Fevig, T., Jennings, S., Johnson, T. A., Kleine, H. P., Knight, C., Nagy, M. A., & Perry, D. A. (2008). Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chemistry, 10(1), 31–36. https://doi.org/10.1039/B711717E

Anastas, P. T., & Warner, J. C. (1998). Green Chemistry: Theory and Practice. Oxford University Press.

Aricetti, J. A., & Tubino, M. (2012). A green and simple visual method for the determination of the acid-number of biodiesel. Fuel, 95, 659–661. https://doi.org/10.1016/j.fuel.2011.10.058

ASTM D1093-11(2017). (2017). Standard Test Method for Acidity of Hydrocarbon Liquids and Their Distillation Residues. https://doi.org/10.1520/D1093-11R17

ASTM D664-18e2. (2018). Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. https://doi.org/10.1520/D0664-18E02

ASTM D8045-17e1. (2017). Standard Test Method for Acid Number of Crude Oils and Petroleum Products by Catalytic Thermometric Titration. https://doi.org/10.1520/D8045-17E01

ASTM D974-14e2. (2014). Standard Test Method for Acid and Base Number by Color-Indicator Titration. https://doi.org/10.1520/D0974-14E02

Baig, A., Paszti, M., & Ng, F. T. T. (2013). A simple and green analytical method for acid number analysis of biodiesel and biodiesel blends based on potentiometric technique. Fuel, 104, 426–432. https://doi.org/10.1016/j.fuel.2012.06.012

Bayomie, O. S., Kandeel, H., Shoeib, T., Yang, H., Youssef, N., & El-Sayed, M. M. H. (2020). Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-64727-5

Byrne, F. P., Jin, S., Paggiola, G., Petchey, T. H. M., Clark, J. H., Farmer, T. J., Hunt, A. J., McElroy, C. R., & Sherwood, J. (2016). Tools and techniques for solvent selection: green solvent selection guides. Sustainable Chemical Processes, 4(1), 1–24. https://doi.org/10.1186/s40508-016-0051-z

Clarke, C. J., Tu, W.-C., Levers, O., Brohl, A., & Hallett, J. P. (2018). Green and sustainable solvents in chemical processes. Chemical Reviews, 118(2), 747–800. https://doi.org/10.1021/acs.chemrev.7b00571

DIN EN 12634:1999-02. (1999). Petroleum products and lubricants: Determination of acid number – Non-aqueous potentiometric titration method.

DIN ISO 6618:2015-07. (2015). Petroleum products and lubricants – Determination of acid or base number – Colour-indicator titration method.

Diorazio, L. J., Hose, D. R. J., & Adlington, N. K. (2016). Toward a more holistic framework for solvent selection. Organic Process Research & Development, 20(4), 760–773. https://doi.org/10.1021/acs.oprd.6b00015

Driver, M. D., & Hunter, C. A. (2020). Solvent similarity index. Physical Chemistry Chemical Physics, 22(21), 11967–11975. https://doi.org/10.1039/D0CP01570A

Fernandes, H. A., Freitas, R. R. de, Ribeiro, D. da C., Vicente, M. de A., & Santos, M. de F. P. dos. (2019). Total acidity in petroleum: A Bibliometric analysis. Research, Society and Development, 8(1), e281505. https://doi.org/10.33448/rsd-v8i1.505

GHS. (2019). Globally Harmonized System of Classification and Labelling of Chemicals (GHS) (Rev.8).

Glavič, P., & Lukman, R. (2007). Review of sustainability terms and their definitions. Journal of Cleaner Production, 15(18), 1875–1885. https://doi.org/10.1016/j.jclepro.2006.12.006

Häckl, K., & Kunz, W. (2018). Some aspects of green solvents. Comptes Rendus Chimie, 21(6), 572–580. https://doi.org/10.1016/j.crci.2018.03.010

Hassaan, M. A., El Nemr, A., & Hassaan, A. (2017). Health and environmental impacts of dyes: mini review. American Journal of Environmental Science and Engineering, 1(3), 64–67. https://doi.org/10.11648/j.ajese.20170103.11

Henderson, R. K., Jiménez-González, C., Constable, D. J. C., Alston, S. R., Inglis, G. G. A., Fisher, G., Sherwood, J., Binks, S. P., & Curzons, A. D. (2011). Expanding GSK’s solvent selection guide–embedding sustainability into solvent selection starting at medicinal chemistry. Green Chemistry, 13(4), 854–862. https://doi.org/10.1039/C0GC00918K

IP 1 - 94(2004). (2004). Determination of acidity, neutralization value - Colour indicator titration method.

Jordan, A., Stoy, P., & Sneddon, H. F. (2020). Chlorinated Solvents: Their Advantages, Disadvantages, and Alternatives in Organic and Medicinal Chemistry. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.0c00709

Macián, V., Tormos, B., García-Barberá, A., & Tsolakis, A. (2021). Applying chemometric procedures for correlation the FTIR spectroscopy with the new thermometric evaluation of Total Acid Number and Total Basic Number in engine oils. Chemometrics and Intelligent Laboratory Systems, 208, 104215. https://doi.org/10.1016/j.chemolab.2020.104215

Madsen, R. B., Anastasakis, K., Biller, P., & Glasius, M. (2018). Rapid determination of water, total acid number, and phenolic content in bio-crude from hydrothermal liquefaction of biomass using FT-IR. Energy & Fuels, 32(7), 7660–7669. https://doi.org/10.1021/acs.energyfuels.8b01208

Musarurwa, H., & Tavengwa, N. T. (2020). Emerging green solvents and their applications during pesticide analysis in food and environmental samples. Talanta, 121507. https://doi.org/10.1016/j.talanta.2020.121507

Oasmaa, A., Elliott, D. C., & Korhonen, J. (2010). Acidity of biomass fast pyrolysis bio-oils. Energy & Fuels, 24(12), 6548–6554. https://doi.org/10.1021/ef100935r

Parisotto, G., Ferrao, M. F., Müller, A. L. H., Müller, E. I., Santos, M. F. P., Guimaraes, R. C. L., Dias, J. C. M., & Flores, É. M. M. (2010). Total acid number determination in residues of crude oil distillation using ATR-FTIR and variable selection by chemometric methods. Energy & Fuels, 24(10), 5474–5478. https://doi.org/10.1021/ef1002974

Park, L. K. E., Liu, J., Yiacoumi, S., Borole, A. P., & Tsouris, C. (2017). Contribution of acidic components to the total acid number (TAN) of bio-oil. Fuel, 200, 171–181. https://doi.org/10.1016/j.fuel.2017.03.022

Prat, D., Pardigon, O., Flemming, H.-W., Letestu, S., Ducandas, V., Isnard, P., Guntrum, E., Senac, T., Ruisseau, S., & Cruciani, P. (2013). Sanofi’s solvent selection guide: A step toward more sustainable processes. Organic Process Research & Development, 17(12), 1517–1525. https://doi.org/10.1021/op4002565

Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C. R., Abou-Shehada, S., & Dunn, P. J. (2015). CHEM21 selection guide of classical-and less classical-solvents. Green Chemistry, 18(1), 288–296. https://doi.org/10.1039/C5GC01008J

Rivera-barrera, D., Rueda-chacón, H., & V, D. M. (2020). Prediction of the total acid number (TAN) of colombian crude oils via ATR – FTIR spectroscopy and chemometric methods. Talanta, 206(May 2019), 1–11. https://doi.org/10.1016/j.talanta.2019.120186

Silva, F. M. da, Lacerda, P. S. B. de, & Jones Junior, J. (2005). Desenvolvimento sustentável e química verde. Química Nova, 28(1), 103–110. https://doi.org/10.1590/S0100-40422005000100019

Speight, J. G. (2014a). High acid crudes. Gulf Professional Publishing.

Speight, J. G. (2014b). The chemistry and technology of petroleum. CRC press.

UOP 565-05. (2005). Acid Number and Naphthenic Acids by Titration (Vol. 05).

UOP 587-92. (1992). Acid Number and Naphthenic Acids by Colorimetric Titration.

Welton, T. (2015). Solvents and sustainable chemistry. Proceedings of the Royal Society A, 471(2183), 20150502. https://doi.org/10.1098/rspa.2015.0502

Xie, W.-Q., Gong, Y.-X., & Yu, K.-X. (2017). A rapid method for the quantitative analysis of total acid number in biodiesel based on headspace GC technique. Fuel, 210, 236–240. https://doi.org/10.1016/j.fuel.2017.08.070

Zhang, J., Lu, M., Ren, F., Knothe, G., & Tu, Q. (2019). A greener alternative titration method for measuring acid values of fats, oils, and grease. Journal of the American Oil Chemists’ Society, 96(10), 1083–1091. https://doi.org/10.1002/aocs.12281

Publicado

06/05/2021

Cómo citar

DECOTÉ, P. A. P. .; ZANELATO, L. N.; VIDOTO, A. P. .; SANTOS , M. de F. P. dos; VICENTE, M. de A. Métrica utilizando conceptos de química verde para evaluar el uso de productos químicos en los métodos nacionales e internacionales estandarizados para determinar el número de acidez total (NAT). Research, Society and Development, [S. l.], v. 10, n. 5, p. e25510514894, 2021. DOI: 10.33448/rsd-v10i5.14894. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14894. Acesso em: 27 sep. 2024.

Número

Sección

Ciencias Exactas y de la Tierra