Evaluación de la producción de metabolito secundario de Chlorella sorokiniana usando medio alternativo con vinaza

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i5.15237

Palabras clave:

Actividad antioxidante; DPPH; Suplementos dietéticos; Cultivo de microalgas.

Resumen

La producción de microalgas es cara y requiere grandes volúmenes de agua y energía. El uso de la vinaza de caña de azúcar como medio alternativo ha ganado atención para el cultivo de microalgas. En este estudio, comparamos el rendimiento de biomasa y la producción de metabolitos secundarios de Chlorella sorokiniana cultivada en un medio comercial (Sueoka) y los cultivados en un medio preparado con vinaza de caña (0.1%) suplementado con N:P:K (20-5-20 gL-1). Las microalgas alcanzaron el punto de crecimiento máximo 14 días más rápido en el medio alternativo. Se encontraron mayores niveles promedio de compuestos fenólicos y contenido de flavonoides en el medio de vinaza (15,28 ± 0,32 mg GAE.g-1 y 72,30 ± 5,28 mg QE.g-1, respectivamente) en comparación con el del medio comercial (6,02 ± 0,13 mg GAE.g-1 y 13,12 ± 1,33 mg QE.g-1, respectivamente). La actividad antioxidante máxima (AOA) de C. sorokiniana cultivada en medio vinaza fue del 88,05% con una concentración de extracto de 1500 µg.mL-1 y una IC50 de 357,7 ± 27,35 µg.mL-1. Diferentes factores, como el estrés debido a la demanda química de oxígeno (DQO) y los iones añadidos de vinaza, pueden haber inducido variaciones en la síntesis de metabolitos secundarios. Se necesitan más investigaciones para explorar alternativas naturales y de bajo costo para aumentar el rendimiento de flavonoides para la bioprospección de microalgas.

Citas

Abd El-Baky, H. H.; El Baz, F. K. & El-Baroty, G. S. (2008). Evaluation of marine alga Ulvalactuca L. as a source of natural preservative ingredient. Am Eurasian J Agr Environ Sci 3(11), 434–444.

Agati, G. & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytol 186, 786–793. Doi: 10.1111/j.1469-8137.2010.03269.x

Alves, C. Q.; David, J. M.; David, J. P.; Bahia, M. V. & Aguiar, R. M. (2010). Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Quím Nova 33, 2202-2210. Doi: 10.1590/S0100-40422010001000033

Aremu, A. O.; Neményi, M.; Stirk, W. A.; Ördög, V. & Van Staden, J. (2015). Manipulation of nitrogen levels and mode of cultivation are viable methods to improve the lipid, fatty acids, phytochemical content, and biactivies in Chlorella minutissima. J Phycol 51(1), 659–669. Doi: 10.1111/jpy.12308

Borowitzka, M. A. (2013). High-value products from microalgae - their development and commercialization. J Appl Phycol 25, 743–756.

Buer, C. S.; Imin, N. & Djordjevic, M. A. (2010). Flavonoids: new roles for old molecules. J Integr Plant Biol 52(1), 98–111. Doi: 10.1111/j.1744-7909.2010.00905.x

Cha, K. H.; Kang, S. W.; Kim, C. Y.; Um, B. H.; Na, Y. R. & Pan, C. (2010). Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J Agr Food Chem 58(8), 4756–4761. Doi: 10.1021/jf100062m

Chen, Z.; Qiu, S.; Amadu, A. A.; Shen, Y.; Wang, L.; Wu, Z. & Ge, S. (2020). Simultaneous improvements on nutrient and Mg recoveries of microalgal bioremediation for municipal wastewater and nickel laterite ore wastewater. Bioresour Technol 297, 122517. Doi: 10.1016/j.biortech.2019.122517

Choi, Y. Y.; Hong, M. E.; Chang, W. S. & Sim, S. J. (2019). Autotrophic biodiesel production from the thermotolerant microalga Chlorella sorokiniana by enhancing the carbon availability with temperature adjustment. Biotechnol Bioprocess Eng 24(1), 223-231. Doi: 10.1007/s12257-018-0375-5

Chu, W. L. (2012). Biotechnological applications of microalgae. IeJSME 6 (Suppl 1), S24-S37.

Goiris, K.; Collen, W. V.; Wilches, I.; Léon-Tamarez, F.; Cooman, L. & Muylaert, K. (2015). Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res 7, 51-57. Doi: 10.1016/j.algal.2014.12.002

Goiris, K.; Muylaert, K. & Fraeye, I.J. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24(1), 1477-1486. Doi: 10.1007/s10811-012-9804-6

Goiris, K.; Muylaert, K.; Voorspoels, S.; De Paepe, D. J. E.; Baart, G. & De Cooman, L. (2014). Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50(1), 483–492. Doi: 10.1111/jpy.12180.

Hajimahmoodi, M.; Faramarzi, M.A.; Mohammadi, N.; Soltani, N.; Oveisi, M. R. & Nafissi-Varcheh, N. (2010). Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22(1), 43-50. Doi: 10.1007/s10811-009-9424-y.

Havsteen, B. H. (2012). The biochemistry and medical significance of the flavonoids. Pharmacol Therapeut 96(1), 67-202. Doi: 10.1016/s0163-7258(02)00298-x.

Huang, G.; Wei, D.; Chen, F.; Zhang, W. (2010). Biodiesel production by microalgal biotechnology. Appl Energy 87(1), 38-46. Doi: 10.1016/j.apenergy.2009.06.016

Ishiguro, S.; Robben, N.; Burghart, R.; Cote, P.; Greenway, S.; Thakkar, R. & Tamura, M. (2020). Cell wall membrane fraction of Chlorella sorokiniana enhances host antitumor immunity and inhibits colon carcinoma growth in mice. Integr Cancer Ther 19. Doi:10.1177/1534735419900555

Jiang, L.; Luo, S.; Fan, X.; Yang.; Z. & Guo, R. (2011). Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88(10), 3336-3341. Doi: 10.1016/j.apenergy.2011.03.043

Katharios P.; Papadakis IE.; Prapas A (2005). Mortality control of viral encephalopathy and retinopathy in 0+ grouper Epinephelus marginatus after prolonged bath in dense Chlorella minutissima culture. B Eur Assoc Fish Pat 25(1), 28–31.

Kledjus, B.; Kopeckýb, J.; Benesová, L. & Vaceka, J. (2009). Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J Chromatogr 1216 (1), 763–771. Doi: 10.1016/j.chroma.2008.11.096

Kobayashi, N.; Noel, E.A.; Barnes, A.; et al (2013). Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150(1), 377–386. Doi: 10.1016/j.biortech.2013.10.032

Koche, J. C., Fundamentos de Metodologia Científica-Teoria da ciência e iniciação à pesquisa.(2011)Editora Vozes. Petrópolis –RJ.

Koes, R.; Verweij, W. & Quattrocchio, F. (2005). Flavonoids: a colorfulmodel for the regulation and evolution of biochemical pathways. Trends Plant Sci 10(1), 236-242. Doi: 10.1016/j.tplants.2005.03.002

Li, H.; Cheng, K.; Wong, C.; Fan, K.; Chen, F. & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102, 771–776. Doi: 10.1016/j.foodchem.2006.06.022

Li, T.; Zheng, Y.; Yu, L. & Chen, S. (2013). High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131, 60-67. Doi: 10.1016/j.biortech.2012.11.121

Liberio, S. A.; Pereira, A. L.; Dutra, R. P.; Reis, A. S.; Araújo, M. J.; Mattar, N. S.; Silva, L. A.; Ribeiro, M. N.; Nascimento, F. R.; Guerra, R. N. & Monteiro-Neto, V. (2011). Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith. BMC Complement Altern Med 11, 1-10. Doi: 10.1186/1472-6882-11-108.

Lin, P. Y.; Tsai, C. T.; Chuang, W. L.; Chao, Y. H.; Pan, I. H.; Chen, Y. K.; Lin, C. C. & Wang, B. Y. (2017). Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo. BMC Complem Altern M 17(1), 88. Doi: 10.1186/s12906-017-1611-9

Lobo, V.; Patil, A.; Phatak, A. & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 4, 118-126. Doi: 10.4103%2F0973-7847.70902

Maisuthisakul, P.; Suttajit, M. & Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem 100 (1), 1409-1418. Doi: 10.1016/j.foodchem.2005.11.032

Mariutti, L. R. B. & Bragagnolo, N. (2007). Revisão: antioxidantes naturais da família Lamiaceae - Aplicação em produtos alimentícios. Braz J Food Technol 10, 96-103.

Markham, K. R. & Andersen, O. M. (2006). Flavonoids: Chemistry, Biochemistry and Applications. CRC Press, Florida 1212p.

Martínez-Flórez, S.; Gonzalez-Gallego, J.; Culebras, J. M. & Tuñón, M. J. (2002). Los flavonoides: propiedades y acciones antioxidantes. Nutric Hospitalar 17(1), 271-278.

Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J. & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Faso honeys as well as their radical scavenging activity. Food Chem 91(1), 571-577. Doi: 10.1016/j.foodchem.2004.10.006

Menegazzo, M. L.; Nascimento, V. M.; Hestekin, C. N.; Hestekin, J. A. & Fonseca, G. G. (2020). Evaluation of Chlorella sorokiniana cultivated in outdoor photobioreactors for biodiesel production. Biofuels 1-6. Doi: 10.1080/17597269.2020.1763094

Morgese, M. G.; Mhillaj, E.; Francavilla, M.; Bove, M.; Morgano, L.; Tucci, P. & Schiavone, S. (2016). Chlorella sorokiniana extract improves short-term memory in rats. Molecules 21(10), 1311. Doi: 10.3390/molecules21101311

Ohse, S.; Derner, R. B.; Ozório, R. Á.; Braga, M. V. C.; Cunha, P.; Lamarca, C. P. & Santos, M. E. (2008). Crescimento de microalgas em sistema autotrófico estacionário. Biotemas 21(2), 7-14.

Olasehinde, T. A.; Odjadjare, E. C.; Mabinya, L. V.; Olaniran, A. O. & Okoh, A. I. (2019). Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. Electron J Biotechnol 40, 1–9. Doi: 10.1016/j.ejbt.2019.03.008

Onofrejová, L.; Vasícková, J.; Klejdus, B.; Stratil, P.; Misurcová, L.; Krácmar, S.; Kopecký, J. & Vacek, J. (2010). Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J Pharmaceut Biomed 51 (1), 464-470. Doi: 10.1016/j.jpba.2009.03.027

Parisi, A. S.; Younes, S. & Reinehr, C. O. (2009). Avaliação da atividade antibacteriana da microalga Spirulina platensis. Ver Ciênc Farm Básica Apl 30(3), 297-301.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da Pesquisa Científica (free ebook). Santa Maria. RS.

Pires, J. C. M.; Alvim-Ferraz, M. C. M.; Martins, F. G. & Simões, M. (2013). Wastewater treatment to enhance the economic viability of microalgae culture. Environ Sci Pollut Res Int 20(1), 5096–5105. Doi: 10.1007/s11356-013-1791-x

Plaza, M. N.; Herrero, M.; Cifuentes, H. A. & Ibáñez, E. (2009). Innovative natural functional ingredients from microalgae. J Agric Food Chem 57(16), 7159–70. Doi: 10.1021/jf901070g.

Raposo, M. F. D. J. & Morais, A. M. M. B. (2015). Microalgae for the prevention of cardiovascular disease and stroke. Life Sci 125, 32–41. Doi: 10.1016/j.lfs.2014.09.018.

Ribeiro, D. M.; Zanetti, G. T.; Juliao, M. H. M.; Masetto, T. E.; Gelinski, J. M. L. N. & Fonseca, G. G. (2019). Effect of different culture media on growth of Chlorella sorokiniana and the influence of microalgal effluents on the germination of lettuce seeds. J Appl Biol Biotechnol 7(1), 6-10. Doi: 10.7324/JABB.2019.70102

Safafar, H.; Wagenen, J.; Moller, P. & Jacobsen, C. (2015). Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs 13, 7339–7356. Doi: 10.3390/md13127069

Scholz, B. & Liebezeit, G. (2012). Screening for biological activities and toxicological effects of 63 phytoplankton species isolated from freshwater, marine and brackish water habitats. Harmful Algae 20, 58–70. Doi: 10.1016/j.hal.2012.07.007

Shen, Y.; Zhu, W.; Li, H.; Ho, S.H.; Chen, J.; Xie, Y. & Shi, X. (2018). Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp. Bioresour Technol 257, 157-163. Doi: 10.1016/j.biortech.2018.02.060

Sipaúba-Tavares, L. H. & Rocha, O. (2003). Produção de plâncton (fitoplâncton e zooplâncton) para alimentação de organismos aquáticos,2 ed. São Carlos: RiMa 122p. 2p.

Skjånes, K.; Rebours, C. & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33(2), 172‐215. Doi: 10.3109/07388551.2012.681625

Stafford, H. A. (1991). Flavonoid evolution: an enzymic approach. J Plant Physiol 96, 680–685.

Sueoka, N. (1960). Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc Natl Acad Sci 46 (1), 83-91. Doi: 10.1073/pnas.46.1.83.

Sutherland, D. L. & Ralph, P. J. (2019). Microalgal bioremediation of emerging contaminants-opportunities and challenges. Water Res 164, 114921. Doi: 10.1016/j.watres.2019.114921

Vendramini, A. L. A. & Trugo, L. C. (2004). Phenolic Compounds in Acerola Fruit (Malpighiapunicifolia, L.). J Brazil Chem Soc 15, 664-668.

Vijayavel, K.; Anbuselvam, C. & Balasubramanian, M. P. (2007). Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats. Mol Cell Biochem 303 (1-2), 39‐44, 2007. Doi: 10.1007/s11010-007-9453-2.

Vizzoto, M. & Pereira, M. C. (2011). Amora-preta (rubussp.): otimização do processo de extração para determinação de compostos fenólicos antioxidantes. Ver Bras Frutic 33(4), 1209-1214. Doi: 10.1590/S0100-29452011000400020.

Wu, Y.H.; Yu, L.; Li, X.; Hu, H.Y. & Su, Z.F. (2012). Biomass production of a Scenedesmus sp. under phosphorous- starvation cultivation condition. Bioresour Technol 112, 193–198. Doi: 10.1016/j.biortech.2012.02.037

Zhang, Y.; Yang, L.; Zu, Y.; Chen, X.; Wang, F. & Liu, F. (2010). Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chem 118(3), 656–662. Doi: 10.1016/j.foodchem.2009.05.038

Zhang, Y-M.; Chen, H.; He, C-L. & Wang, Q. (2013). Nitrogen Starvation Induced Oxidative Stress in an Oil-Producing Green Alga Chlorella sorokiniana C3. PLoS ONE 8(7). Doi: 10.1371/journal.pone.0069225

Descargas

Publicado

14/05/2021

Cómo citar

ANSILAGO, M.; RAMOS, M. M. .; MUSSURY, R. M.; CARVALHO, E. M. de. Evaluación de la producción de metabolito secundario de Chlorella sorokiniana usando medio alternativo con vinaza. Research, Society and Development, [S. l.], v. 10, n. 5, p. e49710515237, 2021. DOI: 10.33448/rsd-v10i5.15237. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15237. Acesso em: 4 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas