Efecto de diferentes empaques em atmosferas modificadas y tiempo de almacenamiento sobre compuestos bioactivos en duraznos Tropic Beauty recién cortados

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i5.15239

Palabras clave:

(Prunus persica (L.) Batsch); Envasado en atmósfera modificada; Recién cortado; Tasa de respiración; Compuestos bioactivos; Vida útil.

Resumen

Se evaluó el envasado en atmósfera modificada (MAP) para determinar la tasa de respiración, color, contenido fenólico total (TPC), actividad antioxidante DPPH, flavonoides y pigmentos del durazno Tropic Beauty recién cortado. Se evaluaron atmósferas modificadas (21% O2 [Control], 5% CO2 [MAP1], 8% CO2 [MAP2] y 0% O2 [MAP3]) para almacenar duraznos recién cortados hasta por 10 días a temperaturas de 5ºC. MAP afectó significativamente (p <0,05) a las propiedades investigadas en comparación con el control. Los duraznos con MAP3 tienen una tasa de respiración más alta (p <0.05) que los duraznos con los otros tratamientos. Duraznos recién cortados en MAP2 mostraron contenidos de carotenoides y antocianinas más estables (p <0,05), mejores atributos en los compuestos bioactivos. MAP1 y MAP2 exhibieron mejores propiedades antioxidantes a baja temperatura de almacenamiento (5ºC) por hasta 10 días de almacenamiento y se verificó un resultado similar mediante el análisis de componentes principales utilizado donde se observó la atmósfera modificada como factor principal.

Citas

Alasalvar, C., Al-Farsi, M., Quantick, P. C., Shahidi, F., & Wiktorowicz, R. (2005). Effect of chill storage and modified atmosphere packaging (MAP) on antioxidant activity, anthocyanins, carotenoids, phenolics and sensory quality of ready-to-eat shredded orange and purple carrots. Food Chemistry, 89(1), 69–76. https://doi.org/10.1016/j.foodchem.2004.02.013

Artes, F., Gomez, P. A., & Artes-Hernandez, F. (2007). Physical, physiological and microbial deterioration of minimally fresh processed fruits and vegetables. Food Science and Technology International, 13(3), 177–188. https://doi.org/10.1177/1082013207079610

Baselice, A., Colantuoni, F., Lass, D. A., Nardone, G., & Stasi, A. (2017). Trends in EU consumers’ attitude towards fresh-cut fruit and vegetables. Food Quality and Preference, 59, 87–96. https://doi.org/10.1016/j.foodqual.2017.01.008

Bassi, D., Mignani, I., Spinardi, A., & Tura, D. (2016). PEACH ( Prunus persica (L.) Batsch). In Nutritional Composition of Fruit Cultivars (pp. 535–571). Elsevier. https://doi.org/10.1016/B978-0-12-408117-8.00023-4

Belay, Z. A., Caleb, O. J., & Opara, U. L. (2019). Influence of initial gas modification on physicochemical quality attributes and molecular changes in fresh and fresh-cut fruit during modified atmosphere packaging. Food Packaging and Shelf Life, 21(May), 100359. https://doi.org/10.1016/j.fpsl.2019.100359

Birt, D. F., & Jeffery, E. (2013). Flavonoids. Advances in Nutrition, 4(5), 576–577. https://doi.org/10.3945/an.113.004465

Bleinroth, E. W. (1986). Recomendações para armazenamento. Toda Fruta.

Blois, M. S. (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181, 1199–1200. https://doi.org/10.1038/1811199a0

Brecht, J. K., Saltveit, M. E., Talcott, S. T., Schneider, K. R., Felkey, K., & Bartz, J. A. (2010). Fresh-Cut Vegetables and Fruits. In Horticultural Reviews (Vol. 30, pp. 185–251). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470650837.ch6

Bursać Kovačević, D., Brdar, D., Fabečić, P., Barba, F. J., Lorenzo, J. M., & Putnik, P. (2020). Strategies to achieve a healthy and balanced diet: fruits and vegetables as a natural source of bioactive compounds. In Agri-Food Industry Strategies for Healthy Diets and Sustainability (pp. 51–88). Elsevier. https://doi.org/10.1016/B978-0-12-817226-1.00002-3

Cefola, M., Pace, B., Sergio, L., Baruzzi, F., Gatto, M. A., Carito, A., Linsalata, V., Cascarano, N. A., & Di Venere, D. (2014). Postharvest performance of fresh-cut “Big Top” nectarine as affected by dipping in chemical preservatives and packaging in modified atmosphere. International Journal of Food Science and Technology, 49(4), 1184–1195. https://doi.org/10.1111/ijfs.12415

Chen, C., Hu, W., He, Y., Jiang, A., & Zhang, R. (2016). Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biology and Technology, 111, 126–131. https://doi.org/10.1016/j.postharvbio.2015.08.005

Choo, W. S. (2018). Fruit pigment changes during ripening. In Reference Module in Food Science (3rd ed., pp. 1–7). Elsevier. https://doi.org/10.1016/B978-0-12-814026-0.21656-9

Cortellino, G., Gobbi, S., Bianchi, G., & Rizzolo, A. (2015). Modified atmosphere packaging for shelf life extension of fresh-cut apples. Trends in Food Science and Technology, 46(2), 320–330. https://doi.org/10.1016/j.tifs.2015.06.002

De la Rosa, L. A., Moreno-Escamilla, J. O., Rodrigo-García, J., & Alvarez-Parrilla, E. (2019). Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 253–271). Elsevier. https://doi.org/10.1016/B978-0-12-813278-4.00012-9

Denoya, G. I., Vaudagna, S. R., & Polenta, G. (2015). Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. LWT - Food Science and Technology, 62(1), 801–806. https://doi.org/10.1016/j.lwt.2014.09.036

Dey, A., & Neogi, S. (2019). Oxygen scavengers for food packaging applications: A review. Trends in Food Science and Technology, 90(April), 26–34. https://doi.org/10.1016/j.tifs.2019.05.013

Ding, T., Cao, K., Fang, W., Zhu, G., Chen, C., Wang, X., & Wang, L. (2020). Evaluation of phenolic components (anthocyanins, flavanols, phenolic acids, and flavonols) and their antioxidant properties of peach fruits. Scientia Horticulturae, 268(October 2019), 109365. https://doi.org/10.1016/j.scienta.2020.109365

Junior, L. C. C., Berlingieri, M. F. D., & Mattiuz, B.-H. (2010). Conservação de pêssegos ‘aurora-1’ armazenados sob refrigeração. Revista Brasileira de Fruticultura, 32(2), 386–396. https://doi.org/10.1590/S0100-29452010005000041

Li, W. L., Li, X. H., Fan, X., Tang, Y., & Yun, J. (2012). Response of antioxidant activity and sensory quality in fresh-cut pear as affected by high O2 active packaging in comparison with low O2 packaging. Food Science and Technology International, 18(3), 197–205. https://doi.org/10.1177/1082013211415147

Liu, H., Cao, J., & Jiang, W. (2014). Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. LWT - Food Science and Technology, 63(2), 1042–1048. https://doi.org/10.1016/j.lwt.2015.04.052

Ma, L., Zhang, M., Bhandari, B., & Gao, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science and Technology, 64, 23–38. https://doi.org/10.1016/j.tifs.2017.03.005

Mahajan, P. V., Caleb, O. J., Gil, M. I., Izumi, H., Colelli, G., Watkins, C. B., & Zude, M. (2017). Quality and safety of fresh horticultural commodities: Recent advances and future perspectives. Food Packaging and Shelf Life, 14, 2–11. https://doi.org/10.1016/j.fpsl.2017.08.001

Martínez-Hernández, G. B., Castillejo, N., & Artés-Hernández, F. (2019). Effect of fresh–cut apples fortification with lycopene microspheres, revalorized from tomato by-products, during shelf life. Postharvest Biology and Technology, 156(February), 110925. https://doi.org/10.1016/j.postharvbio.2019.05.026

Mathooko, F. M. (1996). Regulation of respiratory metabolism in fruits and vegetables by carbon dioxide. Postharvest Biology and Technology, 9, 247–264.

Minas, I. S., Tanou, G., & Molassiotis, A. (2018). Environmental and orchard bases of peach fruit quality. Scientia Horticulturae, 235, 307–322. https://doi.org/10.1016/j.scienta.2018.01.028

Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68–76. https://doi.org/10.1016/j.seppur.2016.01.043

Mota, D., Leonel, S., Pereira, G., Marques, S., & Pereira, A. (2012). Caracterização da polpa de pêssegos produzidos em São Manuel-SP. Ciencia Rural, 42(1), 52–57. https://doi.org/10.1590/S0103-84782012000100009

Naheed, Z., Cheng, Z., Wu, C., Wen, Y., & Ding, H. (2017). Total polyphenols, total flavonoids, allicin and antioxidant capacities in garlic scape cultivars during controlled atmosphere storage. Postharvest Biology and Technology, 131(May), 39–45. https://doi.org/10.1016/j.postharvbio.2017.05.002

Oliveira, A., Coelho, M., Alexandre, E. M. C., Gomes, M. H., Almeida, D. P. F., & Pintado, M. (2015). Effect of modified atmosphere on phytochemical profile of pasteurized peach purées. LWT - Food Science and Technology, 64(2), 520–527. https://doi.org/10.1016/j.lwt.2015.06.023

Opara, U. L., Caleb, O. J., & Belay, Z. A. (2019). Modified atmosphere packaging for food preservation. In Food Quality and Shelf Life (pp. 235–259). Elsevier. https://doi.org/10.1016/B978-0-12-817190-5.00007-0

Özkaya, O., Yildirim, D., Dündar, Ö., & Tükel, S. S. (2016). Effects of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging on postharvest storage quality of nectarine fruit. Scientia Horticulturae, 198, 454–461. https://doi.org/10.1016/j.scienta.2015.12.016

Pérez-Gregorio, M. R., García-Falcón, M. S., & Simal-Gándara, J. (2011). Flavonoids changes in fresh-cut onions during storage in different packaging systems. Food Chemistry, 124(2), 652–658. https://doi.org/10.1016/j.foodchem.2010.06.090

Pérez-López, A., Chávez-Franco, S. H., Villaseñor-Perea, C. A., Espinosa-Solares, T., Hernández-Gómez, L. H., & Lobato-Calleros, C. (2014). Respiration rate and mechanical properties of peach fruit during storage at three maturity stages. Journal of Food Engineering, 142, 111–117. https://doi.org/10.1016/j.jfoodeng.2014.06.007

Perotti, V. E., Moreno, A. S., & Podestá, F. E. (2014). Physiological aspects of fruit ripening: The mitochondrial connection. Mitochondrion, 17, 1–6. https://doi.org/10.1016/j.mito.2014.04.010

Plazzotta, S., Manzocco, L., & Nicoli, M. C. (2017). Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends in Food Science & Technology, 63, 51–59. https://doi.org/10.1016/j.tifs.2017.02.013

Rocculi, P., Romani, S., & Dalla Rosa, M. (2004). Evaluation of physico-chemical parameters of minimally processed apples packed in non-conventional modified atmosphere. Food Research International, 37(4), 329–335. https://doi.org/10.1016/j.foodres.2004.01.006

Saltveit, M. E. (2019). Respiratory Metabolism. In Postharvest Physiology and Biochemistry of Fruits and Vegetables (Issue 1, pp. 73–91). Elsevier. https://doi.org/10.1016/B978-0-12-813278-4.00004-X

Selcuk, N., & Erkan, M. (2014). Changes in antioxidant activity and postharvest quality of sweet pomegranates cv. Hicrannar under modified atmosphere packaging. Postharvest Biology and Technology, 92, 29–36. https://doi.org/10.1016/j.postharvbio.2014.01.007

Sims, D., & Gamon, J. (2002). Relationship between leaf pigment con- tent and spectral reflectance across a wide range species, leaf structures and development stages. Remote Sensing of Environment, 81, 337–354. https://doi.org/10.1016/S0034-4257(02)00010-X

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagens. American Journal of Enology and Viticulture, 16, 144–158.

Solovchenko, A., Yahia, E. M., & Chen, C. (2019). Pigments. In Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 225–252). Elsevier. https://doi.org/10.1016/B978-0-12-813278-4.00011-7

Velderrain-Rodríguez, G. R., López-Gámez, G. M., Domínguez-Avila, J. A., González-Aguilar, G. A., Soliva-Fortuny, R., & Ayala-Zavala, J. F. (2019). Minimal Processing. In Postharvest Technology of Perishable Horticultural Commodities (pp. 353–374). Elsevier. https://doi.org/10.1016/B978-0-12-813276-0.00010-9

Vivek, K., Suranjoy Singh, S., W, R., M, S., Z, B., H, B., S, M., & RC, P. (2019). A review on postharvest management and advances in the minimal processing of fresh-cut fruits and vegetables. Journal of Microbiology, Biotechnology and Food Sciences, 8(5), 1178–1187. https://doi.org/10.15414/jmbfs.2019.8.5.1178-1187

Xi, Y., Fan, X., Zhao, H., Li, X., Cao, J., & Jiang, W. (2017). Postharvest fruit quality and antioxidants of nectarine fruit as in fluenced by chlorogenic acid. LWT - Food Science and Technology, 75, 537–544. https://doi.org/10.1016/j.lwt.2016.10.004

Yahia, E. M., Fadanelli, L., Mattè, P., & Brecht, J. K. (2019). Controlled Atmosphere Storage. In Postharvest Technology of Perishable Horticultural Commodities (pp. 439–479). Elsevier. https://doi.org/10.1016/B978-0-12-813276-0.00013-4

Yousuf, B., Qadri, O. S., & Srivastava, A. K. (2018). Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT - Food Science and Technology, 89, 198–209. https://doi.org/10.1016/j.lwt.2017.10.051

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

Descargas

Publicado

14/05/2021

Cómo citar

ACEVEDO, A. F. G. .; LACERDA, V. R. .; SANTOS, J. A. dos .; AGUILAR, A. S. .; VASQUE, H. .; VIEITES, R. L. . Efecto de diferentes empaques em atmosferas modificadas y tiempo de almacenamiento sobre compuestos bioactivos en duraznos Tropic Beauty recién cortados. Research, Society and Development, [S. l.], v. 10, n. 5, p. e47610515239, 2021. DOI: 10.33448/rsd-v10i5.15239. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15239. Acesso em: 8 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas