Análisis del flujo de resina durante la fabricación de compuestos de GFRP mediante RTM que contienen insertos impermables incrustados
DOI:
https://doi.org/10.33448/rsd-v10i6.15362Palabras clave:
Materiales compuestos; RTM; Insertos incrustados.Resumen
El objetivo de este trabajo es analizar el flujo de resina durante la fabricación de composites de GFRP (Polímero Reforzado con Fibra de Vidrio) mediante RTM (Resin Transfer Moulding) que contienen insertos impermeables incrustados. Los compuestos se procesaron con inserciones impermeables de polietileno de alta densidad incrustados mediante RTM. El sistema de procesamiento se configuró para que se pudiera realizar el análisis digital de la imagen de flujo durante y después del procesamiento. Se cortaron de las placas muestras para las pruebas de flexión en tres puntos y se analizaron sus superficies fracturadas mediante fractografía óptica. Los resultados indican que la presencia de los insertos bloqueó el flujo cruzado de resina dificultando que las fibras se humedecieran por completo, lo que condujo a un espesor de placa no uniforme. Se observaron regiones ricas en resina cerca de los lados de los insertos. El análisis del modo de falla de los composites a través de la prueba de flexión en tres puntos mostró deslaminación de las fibras por esfuerzo cortante tipo II, despegue entre la interfaz fibra / matriz y el inserto, y fractura del composite con propagación de grietas a través del región rica en resina.
Citas
Agnes, E. A., & Hilling, E. (2020). Propriedades físico-mecânicas de compósitos polímero-fibra produzido por moldagem prensada. Research, Society and Development, 9(8). http://dx.doi.org/10.33448/rsd-v9i8.5063.
Ahmed, A., Fahim, A., & Naguib, H. E. (2010). Load bearing properties of three-component polymer composites. Polymer composites, 31, 1731-1737. https://doi.org/10.1002/pc.20963.
Ahmed, A., Fahim, A., & Naguib, H. E. (2011). A study on the anchoring orientations of foam and sandwich composites with metal. Polymer Composites, 32, 596-603. https://doi.org/10.1002/pc.21070.
Amorim Jr., W. F. (2007). Processamento de placa espessa de compósito através de moldagem por transferência de resina. PhD thesis, Universidade Federal do Rio de Janeiro.
Aranha, R. (2017). Estudo do processamento de materiais compósitos com inserts impermeáveis embebidos via RTM. Master thesis, Universidade Federal de Campina Grande.
ASTM D7264/D7264M-15, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, 2015.
Batista, S. S., Souza, L. G. M., Bezerra, D. M. L., & Neto, R. V. P. (2020). Viabilities for obtaining, manufacturing and applying composites using bamboo powders and ophthalmic lens waste. Research, Society and Development, 9(9). http://dx.doi.org/10.33448/rsd-v9i9.7455.
Chen, B., Lang, E. J., & Chou, T.W. (2001). Experimental and theoretical studies of fabric compaction behavior in resin transfer molding. Materials Science and Engineering: A, 317, 188-196. https://doi.org/10.1016/S0921-5093(01)01175-3.
Chizari, K., Arjmand, M., Liu, Z., Sundararaj, U., & Therriault, D. (2017). Three-dimensional printing of highly conductive polymer nanocomposites for emi shielding applications. Materials Today Communications, 11, 112-118. https://doi.org/10.1016/j.mtcomm.2017.02.006.
Etches, J. A., & Fernando, G. F. (2009). Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluation. Polymer Composites, 30, 1265-1274. https://doi.org/10.1002/pc.20690.
Gauvin, R., Trochu, F., Lemenn, Y., & Diallo, L. (1996). Permeability measurement and flow simulation through fiber reinforcement. Polymer composites, 17, 34-42. https://doi.org/10.1002/pc.10588.
Gebhardt, J., & Fleischer, J. (2014). Experimental investigation and performance enhancement of inserts in composite parts. Procedia CIRP, 23, 7-12. https://doi.org/10.1016/j.procir.2014.10.084.
Hammami, A., Gauvin, R., & Trochu, F. (1998). Modeling the edge effect in liquid composites molding. Composites Part A: applied science and manufacturing, 29, 603-609. https://doi.org/10.1016/S1359-835X(97)00120-6.
Hanu, L., Simon, G., Mansouri, J., Burford, R., & Cheng, Y. (2004). Development of polymer-ceramic composites for improved fire resistance. Journal of materials processing technology, 153, 401-407. https://doi.org/10.1016/j.jmatprotec.2004.04.104.
Jhan, Y. T., Lee, Y. J., & Chung, C. H. (2011). Resin flowing analysis in sandwich laminates under VARTM process. Journal of Reinforced Plastics and Composites, 30, 533–545. https://doi.org/10.1177/0731684411399142.
Kim, H., Myounggu, P., & Hsieh, K. (2006). Fatigue fracture of embedded copper conductors in multifunctional composite structures. Composite Science and Technology, 66, 1010-1021. https://doi.org/10.1016/j.compscitech.2005.08.007.
Lacasse, S., Terriault, P., Simoneau, C., & Brailovski, V. (2015). Design, manufacturing, and testing of an adaptive composite panel with embedded shape memory alloy actuators. Journal of Intelligent Material Systems and Structures, 26, 2055-2072. https://doi.org./10.1177/1045389X14549862.
Lawrence, J. M., Frey, P., Obaid, A. A., Yarlagadda, S., & Advani, S. G. (2007). Simulation and Validation of Resin Flow During Manufacturing of Composite Panels Containing Embedded Impermeable Inserts with the VARTM Process. Polymer Composites, 28, 442-450. https://doi.org/10.1002/pc.20293.
Lee, C. H., Kim, C. W., Yang, S. U., & Ku, B. M. (2007). A development of integral composite structure for the ramp of infantry fighting vehicle. 23º International Symposis on Ballistics Tarragona.
Liu, B., Bickerton, S., & Advani, S. G. (1996). Modelling and simulation of resin transfer moulding (rtm)-gate control, venting and dry spot prediction. Composites Part A: applied science and manufacturing, 27, 135-141. https://doi.org/10.1016/1359-835X(95)00012-Q.
Madhi, S. et al. (2003). Effect of the manufacturing process on the interfacial properties and structural perfomance of multi-functional composite structures. Composites Part A: applied science and manufacturing, 34, 635-647. https://doi.org/10.1016/S1359-835X(03)00091-5.
Naik, N. K., Rao, N., Agarwal, U., Raju, K. A., Pottigar, S. A., & Suresh, V. (2009). Sandwich structures with composite inserts: experimental studies. Polymer Composites, 30, 639-648. https://doi.org/10.1002/pc.20600.
Obaid, A. A., & Yarlagadda, S. (2008). Structural performance of the glass fiber-vinyl ester composites with interlaminar copper inserts. Composites: Part A: applied science and manufacturing, 39 195-203. https://doi.org/10.1016/j.compositesa.2007.11.006.
Pappada, S., Rametta, R., Largo, A., & Maffezzoli, A. (2012). Low-velocity impact response in composite plates embedding shape memory alloy wires. Polymer Composites, 33, 655-664. https://doi.org/10.1002/pc.22170.
Simoneau, C., Terriault, P., Lacasse, S., & Brailovski, V. (2014). Adaptive composite panel with embedded SMA actuators: modeling and validation. Mechanics Based Design of Structures and Machines, 42, 174-192. https://doi.org/10.1080/ 15397734.2013.864246.
Souza, N. S., Felipe, R. C. T. S., Felipe, R. N. B., & Lima, N. L. P. (2020). Resíduos sólidos industriais: compósito com resíduos de plástico reforçado com fibra de vidro. Research, Society and Development, 9(9). http://dx.doi.org/10.33448/rsd-v9i9.7136.
Sozer, E., Simacek, P., & Advani, S. (2012). Resin transfer molding (rtm) in polymer matrix composites. Manufacturing techniques for polymer matrix composites (PMCs), 245-309. https://doi.org/10.1533/9780857096258.3.243.
Steeves, C. A., & Fleck, N. A. (2006). In-plane properties of composite laminates with through-thickness pin reinforcement. International Journal of Solids and Structures, 43, 3197–3212. https://doi.org/10.1016/j.ijsolstr.2005.05.017.
Thakur, A., & Dong, X. (2020). Printing with 3D continuous carbon fiber multifunctional composites via UV-assisted coextrusion deposition. Manufacturing Letters, 24, 1-5. https://doi.org/10.1016/j.mfglet.2020.02.001.
Xiao, Y., Oiao, W., Fukuda, H., & Hatta, H. (2016). The effect of embedded devices on structural integrity of composite laminates. Composites Structures, 153, 21-29. https://doi.org/10.1016/j.compstruct.2016.06.007.
Wang, Q., Chen, Z., & Chen, Z. (2013). Design and characteristics of hybrid composite armor subjected to projectile impact. Materials and Design, 46, 634-639. https://doi.org/10.1016/j.compstruct.2016.06.007.
Zhao, D. (2011). Study of a new manufacturing for multi-functional composite structures with aerosol-jet printing. Master thesis, Florida State University.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Rudá Aranha; Laura Hecker de Carvalho; Wanderley Ferreira de Amorim Junior
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.