Análisis de parámetros constructivos en el rendimiento térmico de desaladoras solares: Revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i6.15472

Palabras clave:

Agua salobre; Desalación; Potabilidad.

Resumen

El desalinizador solar es un dispositivo anclado en una tecnología viable y de bajo costo para aprovechar la energía del sol. Además, es resistente a altas temperaturas y puede obtener agua potable. El objetivo de este trabajo es estudiar la influencia de los parámetros constructivos del rendimiento térmico de un desalador solar. Para cumplir con este objetivo, se eligió una descripción secuencial de los factores que interfieren con el proceso de destilación solar. Los resultados de esta revisión indicaron que la desalación solar se ve afectada por el área de evaporación, la profundidad de la capa de agua y el ángulo de la cubierta de desalación. El aislamiento del sistema de desalación afectó positivamente la productividad, ya que aumentó la capacidad de calefacción y los efectos evaporativos dentro del desalador. También se verificó a partir de los estudios observados que se mejora el rendimiento del desalador mediante el aumento de la radiación solar, la temperatura del aire ambiente, la temperatura inicial del agua en la bandeja y la velocidad del viento. Además, el desempeño se asoció a la conductividad térmica de los materiales utilizados en la producción del desalador, y a que se logre una alta tasa de productividad de desalación utilizando materiales termo absorbentes, como el uso de aletas, nano fluidos y esponjas integradas en el desalador. Por tanto, se concluyó que los parámetros climáticos y operativos inherentes al desalador solar, fueron factores determinantes para mejorar la productividad del agua desalada.

Biografía del autor/a

Yohanna Jamilla vilar de Brito, Universidade Estadual da Paraíba

Doutoranda em Engenharia Ambiental

Kênia Kelly Freitas Sarmento, Universidade Estadual da Paraíba

Mestranda em Ciências e Tecnologia ambiental

Camilla Soares de Oliveira, Universidade Estadual da Paraíba

Mestranda Ciências e Tecnologia Ambiental

Keila Machado de Medeiros, Universidade Federal do Recôncavo da Bahia

Professora - Centro de Ciência e Tecnologia em Energia e Sustentabilidade - CETENS 

Carlos Antônio Pereira de Lima, Universidade Estadual da Paraíba

Professor do Departamento de Engenharia Sanitária e Ambiental

Citas

Abujazar, M. S. S., Fatihah, S., Rakmi, A. R., & Shahrom, M. Z. (2016). The effects of design parameters on productivity performance of a solar still for seawater desalination: A review. Desalination, 385, 178-193.

Abdallah, S., Badran, O., & Abu-Khader, M. M. (2018). Performance evaluation of a modified design of a single slope solar still. Desalination, 219(1-3), 222-230.

Ahmed, H. M., & Alfaylakawi, K. A. (2012). Productivity enhancement of conventional solar stills using water sprinklers and cooling fan. Journal of Advanced Science and Engineering Research, 2(3), 168-177.

Ahmed, F. E., Hashaikeh, R., & Hilal, N. (2019). Solar powered desalination–Technology, energy and future outlook. Desalination, 453, 54-76.

Ahsan, A., Imteaz, M., Thomas, U. A., Azmi, M., Rahman, A., & Daud, N. N. (2014). Parameters affecting the performance of a low cost solar still. Applied energy, 114, 924-930.

Almuhanna, E. A. (2014). Evaluation of single slop solar still integrated with evaporative cooling system for brackish water desalination. Journal of Agricultural Science, 6(1), 48.

Al-Garni, A. Z. (2012). Enhancing the solar still using immersion type water heater productivity and the effect of external cooling fan in winter. Applied Solar Energy, 48(3), 193-200.

Al-Karaghouli, A. A., & Alnaser, W. E. (2016). Experimental comparative study of the performances of single and double basin solar-stills. Applied Energy, 77(3), 317-325.

Al-Hinai, H., Al-Nassri, M. S., & Jubran, B. A. (2002). Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Conversion and Management, 43(13), 1639-1650.

Arunkumar, T., Jayaprakash, R., Denkenberger, D., Ahsan, A., Okundamiya, M. S., Tanaka, H., & Aybar, H. Ş. (2012). An experimental study on a hemispherical solar still. Desalination, 286, 342-348..

Attia, M. E. H., Driss, Z., Manokar, A. M., & Sathyamurthy, R. (2020). Effect of aluminum balls on the productivity of solar distillate. Journal of Energy Storage, 30, 101466.

Bhatacharyya, A. (2013). Solar still for desalination of water in rural household. International Journal of Environment and Sustain ability, 2(1), 21-30.

Elango, T., Kannan, A., & Murugavel, K. K. (2015). Performance study on single basin single slope solar still with different water nanofluids. Desalination, 360, 45-51.

El-Sebaii, A. A., & El-Bialy, E. (2015). Advanced designs of solar desalination systems: A review. Renewable and Sustainable Energy Reviews, 49, 1198-1212.

El-Samadony, Y. A. F., & Kabeel, A. E. (2014). Theoretical estimation of the optimum glass cover water film cooling parameters combinations of a stepped solar still. Energy, 68, 744-750.

Gupta, B., Sharma, R., Shankar, P., & Baredar, P. (2016). Performance enhancement of modified solar still using water sprinkler: An experimental approach. Perspectives in Science, 8, 191-194.

Ghoneyem, A., & Ileri, A. (1997). Software to analyze solar stills and an experimental study on the effects of the cover. Desalination, 114(1), 37-44.

Hamed, M. H., Kabeel, A. E., Omara, Z. M., & Sharshir, S. W. (2015). Mathematical and experimental investigation of a solar humidification–dehumidification desalination unit. Desalination, 358, 9-17.

Kabeel, A. E., & El-Agouz, S. A. (2011). Review of researches and developments on solar stills. Desalination, 276(1-3), 1-12.

Kabeel, A. E., Sathyamurthy, R., Sharshir, S. W., Muthumanokar, A., Panchal, H., Prakash, N., & El Kady, M. S. (2019). Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint. Journal of Cleaner Production, 213, 185-191.

Kabeel, A. E., Sathyamurthy, R., Manokar, A. M., Sharshir, S. W., Essa, F. A., & Elshiekh, A. H. (2020). Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM's) for fresh water production. Journal of Energy Storage, 28, 101204.

Khalifa, A. J. N., & Ali, M. A. (2015). Indoor tests on the effect of wind speed on still performance. International Journal of Energy and Environment, 6(3), 299.

Khalifa, A. J. N., & Hamood, A. M. (2009). On the verification of the effect of water depth on the performance of basin type solar stills. Solar Energy, 83(8), 1312-1321.

Kumar, S., & Dwivedi, V. K. (2015). Experimental study on modified single slope single basin active solar still. Desalination, 367, 69-75.

Luo, T., Young, R., & Reig, P. (2015). Aqueduct projected water stress country rankings. Technical Note.

Madhukeshwara, N., & Prakash, E. S. (2012). An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings. International Journal of Energy & Environment, 3(1).

Manokar, A. M., Murugavel, K. K., & Esakkimuthu, G. (2014). Different parameters affecting the rate of evaporation and condensation on passive solar still–A review. Renewable and Sustainable Energy Reviews, 38, 309-322.

Morse, RN e Read, WRW (1968). Uma base racional para o desenvolvimento de engenharia de um destilador solar. Energia solar, 12 (1), 5-17.

Muftah, A. F., Alghoul, M. A., Fudholi, A., Abdul-Majeed, M. M., & Sopian, K. (2014). Factors affecting basin type solar still productivity: A detailed review. Renewable and Sustainable Energy Reviews, 32, 430-447.

Murugavel, K. K., Chockalingam, K. K., & Srithar, K. (2008). Progresses in improving the effectiveness of the single basin passive solar still. Desalination, 220(1-3), 677-686.

Murugavel, K. K., Sivakumar, S., Ahamed, J. R., Chockalingam, K. K., & Srithar, K. (2010). Single basin double slope solar still with minimum basin depth and energy storing materials. Applied energy, 87(2), 514-523.

Nafey, A. S., Abdelkader, M., Abdelmotalip, A., & Mabrouk, A. A. (2011). Solar still productivity enhancement. Energy conversion and management, 42(11), 1401-1408.

Nafey, A. S., Abdelkader, M., Abdelmotalip, A., & Mabrouk, A. A. (2012). Enhancement of solar still productivity using floating perforated black plate. Energy Conversion and Management, 43(7), 937-946.

Omara, Z. M., Kabeel, A. E., & Younes, M. M. (2013). Enhancing the stepped solar still performance using internal reflectors. Desalination, 314, 67-72.

Onu, United Nations Environment Programme (2020, Fevereiro). http://www.unep.org/themes/freshwater.html.

Panchal, H. N., & Patel, S. (2017). An extensive review on different design and climatic parameters to increase distillate output of solar still. Renewable and Sustainable Energy Reviews, 69, 750-758.

Panchal, H. N. (2015). Enhancement of distillate output of double basin solar still with vacuum tubes. Journal of King Saud University-Engineering Sciences, 27(2), 170-175.

Prakash, P., & Velmurugan, V. (2015). Parameters influencing the productivity of solar stills–A review. Renewable and sustainable energy reviews, 49, 585-609.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica Ed (pp. 3-9). UFSM. https://repositorio. ufsm. br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica. pdf.

Rajaseenivasan, T., & Srithar, K. (2016). Performance investigation on solar still with circular and square fins in basin with CO2 mitigation and economic analysis. Desalination, 380, 66-74.

Sathyamurthy, R., Kennady, H. J., Nagarajan, P. K., & Ahsan, A. (2014). Factors affecting the performance of triangular pyramid solar still. Desalination, 344, 383-390.

Salem, M. R., Salem, M. R., Higazy, M. G., & Abdrabbo, M. F. (2020). Performance enhancement of a solar still distillation unit: A field investigation. Solar Energy, 202, 326-341.

Selvaraj, K., & Natarajan, A. (2018). Factors influencing the performance and productivity of solar stills-A review. Desalination, 435, 181-187.

Setoodeh, N., Rahimi, R., & Ameri, A. (2011). Modeling and determination of heat transfer coefficient in a basin solar still using CFD. Desalination, 268(1-3), 103-110.

Shalaby, S. M., El-Bialy, E., & El-Sebaii, A. A. (2016). An experimental investigation of a v-corrugated absorber single-basin solar still using PCM. Desalination, 398, 247-255.

Shang, M., Li, N., Zhang, S., Zhao, T., Zhang, C., Liu, C., & Wang, Z. (2017). Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials, 1(1), 56-61.

Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., & Mayes, A. M. (2010). Science and technology for water purification in the coming decades. Nanoscience and technology: a collection of reviews from nature Journals, 337-346.

Sharshir, S. W., Yang, N., Peng, G., & Kabeel, A. E. (2016). Factors affecting solar stills productivity and improvement techniques: a detailed review. Applied Thermal Engineering, 100, 267-284.

Sharshir, S. W., Peng, G., Wu, L., Yang, N., Essa, F. A., Elsheikh, A. H., & Kabeel, A. E. (2017). Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Applied Thermal Engineering, 113, 684-693.

Sharon, H., & Reddy, K. S. (2015). A review of solar energy driven desalination technologies. Renewable and Sustainable Energy Reviews, 41, 1080-1118.

Singh, H. N., & Tiwari, G. N. (2004). Monthly performance of passive and active solar stills for different Indian climatic conditions. Desalination, 168, 145-150.

Srivastava, P. K., & Agrawal, S. K. (2013). Winter and summer performance of single sloped basin type solar still integrated with extended porous fins. Desalination, 319, 73-78.

Tanaka, H. (2009). Tilted wick solar still with external flat plate reflector: optimum inclination of still and reflector. Desalination, 249(1), 411-415.

Tiwari, A. K., & Tiwari, G. N. (2006). Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition. Desalination, 195(1-3), 78-94.

Tripathi, R., & Tiwari, G. N. (2006). Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction. Solar energy, 80(8), 956-967.

Velmurugan, V., & Srithar, K. (2011). Performance analysis of solar stills based on various factors affecting the productivity—a review. Renewable and sustainable energy reviews, 15(2), 1294-1304.

Vergara, S. C. Métodos de pesquisa em administração. Atlas, 2005

Velmurugan, V., Gopalakrishnan, M., Raghu, R., & Srithar, K. (2018). Single basin solar still with fin for enhancing productivity. Energy Conversion and Management, 49(10), 2602-2608.

Vieira, M., & Zouain, D. (2006). Pesquisa qualitativa em administração. (2a ed.), FGV editora.

Yadav, S., & Sudhakar, K. (2015). Different domestic designs of solar stills: A review. Renewable and Sustainable Energy Reviews, 47, 718-731.

Zanganeh, P., Goharrizi, A. S., Ayatollahi, S., & Feilizadeh, M. (2019). Productivity enhancement of solar stills by nano-coating of condensing surface. Desalination, 454, 1-9.

Zheng, H., Chang, Z., Chen, Z., Xie, G., & Wang, H. (2013). Experimental investigation and performance analysis on a group of multi-effect tubular solar desalination devices. Desalination, 311, 62-68.

Zhou, L., Tan, Y., Wang, J., Xu, W., Yuan, Y., Cai, W., & Zhu, J. (2016). 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 10(6), 393-398.

Zhu, G., Xu, J., Zhao, W., & Huang, F. (2016). Constructing black titania with unique nanocage structure for solar desalination. ACS applied materials & interfaces, 8(46), 31716-31721.

Zurigat, Y. H., & Abu-Arabi, M. K. (2004). Modelling and performance analysis of a regenerative solar desalination unit. Applied thermal engineering, 24(7), 1061-1072.

Publicado

29/05/2021

Cómo citar

BEZERRA, V. R. .; BRITO, Y. J. vilar de .; SARMENTO, K. K. . F. .; OLIVEIRA, C. S. de .; MEDEIROS, K. M. de .; LIMA, C. A. P. de . Análisis de parámetros constructivos en el rendimiento térmico de desaladoras solares: Revisión. Research, Society and Development, [S. l.], v. 10, n. 6, p. e24010615472, 2021. DOI: 10.33448/rsd-v10i6.15472. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15472. Acesso em: 4 ene. 2025.

Número

Sección

Ingenierías