Tecnología de encapsulación en el área alimentaria: Una revisión
DOI:
https://doi.org/10.33448/rsd-v10i7.16240Palabras clave:
Agentes activos; Técnicas de encapsulación; Industria de alimentos; Aplicación de partículas.Resumen
La tecnología de encapsulación ha ido avanzando en los últimos años y se ha introducido en diferentes segmentos industriales con diferentes funciones, incluso de proteger sustancias (agentes activos) de efectos nocivos que provocan pérdida de características fisicoquímicas, químicas o funcionales. Se basa en el acondicionamiento del agente activo en una envoltura de polímeros. En el sector alimentario, las sustancias encapsuladas pueden incorporarse a la matriz alimentaria como parte de la dinámica de los procesos industriales. El objetivo de este trabajo consistió en un levantamiento bibliográfico, abordando los aspectos de formación, caracterización y aplicación de materiales encapsulados en el área de la alimentación. En la conceptualización del surgimiento tecnológico de la encapsulación, se dilucidaron los principales métodos para la formación de partículas: físicos, químicos, físico químicos y los emergentes en el área de estudio. Se fueran aclarados la conceptualización del surgimiento tecnológico de la encapsulación, los principales métodos para la formación de las partículas: físicos, químicos, fisicoquímicos y los emergentes en el área de estudio. También se presentaron los agentes activos más explorados en el sector alimentario, abordando sus aplicaciones y propuestas innovadoras, considerando lo que esto genera desde perspectivas futuras para la técnica de encapsulación que, entre otras finalidades, proporciona una mejor aplicación a sustancias que presentan dificultades de comercialización. Así, es necesario incentivar que los estudios de aplicación sean más explotados y que esto se refleja en soluciones favorables al escalado a nivel industrial.
Citas
Aguilera, J. M. (2018). Engenharia de alimentos no século XXI. AlChE Journal, 64 (1), 2-11.
Alagha, M. S., & Szentannai, P. (2020). Analytical review of fluid-dynamic and thermal modeling aspects of fluidized beds for energy conversion devices. International Journal of Heat and Mass Transfer, 147, 118907.
Alehosseini, E., & Jafari, S. M. (2019). Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends in Food Science and Technology, 91, 116-128.
Alexandre, J. de B., Barroso, T. L. C. T., Oliveira, M. de A., Mendes, F. R. da S., da Costa, J. M. C., Moreira, R. de A., & Furtado, R. F. (2019). Cross-linked coacervates of cashew gum and gelatin in the encapsulation of pequi oil. Ciencia Rural, 49(12), 20190079.
Azeredo, H. M. C. de (2005). Encapsulação: aplicação à tecnologia de alimentos. Alimentos e Nutrição, 16(1), 89-97.
Bartkiene, E., Zavistanaviciute, P., Lele, V., Ruzauskas, M., Bartkevics, V., Bernatoniene, J., Gallo, P., Tenore, G. C., & Santini, A. (2018). Lactobacillus plantarum LUHS135 and paracasei LUHS244 as functional starter cultures for the food fermentation industry: Characterisation, mycotoxin-reducing properties, optimisation of biomass growth and sustainable encapsulation by using dairy by-produc. Lwt, 93(March), 649-658.
Bastos, L. P. H., Vicente, J., Santos, C. H. C. dos, Carvalho, M. G. de, & Garcia-Rojas, E. E. (2020). Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids, 102(September 2019), 105605.
Belostozky, A., Bretler, S., Kolitz-Domb, M., Grinberg, I., & Margel, S. (2019). Solidification of oil liquids by encapsulation within porous hollow silica microspheres of narrow size distribution for pharmaceutical and cosmetic applications. Materials Science and Engineering C, 97(December 2018), 760-767.
Benelli, L., & Oliveira, W. P. (2019). Fluidized bed coating of inert cores with a lipid-based system loaded with a polyphenol-rich Rosmarinus officinalis extract. Food and Bioproducts Processing, 114, 216-226.
Besselink, M. G., Santvoort, H. C., Buskens, E. van, Boermeester, M. A., Goor, H. van, Timmerman, H. M., Nieuwenhuijs, V. B., Bollen, T. L., Ramshorst, B. van, Witteman, B. J., Rosman, C., Ploeg, R. J., Brink, M. A., Schaapherder, A. F., Dejong, C. H., Wahab, P. J., Laarhoven, C. J. van, Harst, E. van der, Eijck, C. H. van, Cuesta, M. G., Akkermans, L. M. A., & Gooszen, H. G. (2008). Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. The Lancet, 371(9613), 651-659.
Bilal, M., & Iqbal, H. M. N. (2019). Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities – A review. Food Research International, 123(April), 226-240.
Bilek, S. E., Yılmaz, F. M., & Özkan, G. (2017). The effects of industrial production on black carrot concentrate quality and encapsulation of anthocyanins in whey protein hydrogels. Food and Bioproducts Processing, 102, 72-80.
Blenford, D. (1986). Food, flavourings, ingredients, processing. Packaging, 8, (7), 43.
Bruni, G. P., Oliveira, J. P. de, Gómez-Mascaraque, L. G., Fabra, M. J., Martins, V. G., Zavareze, E. da R., & López-Rubio, A. (2020). Electrospun β-carotene–loaded SPI:PVA fiber mats produced by emulsion-electrospinning as bioactive coatings for food packaging. Food Packaging and Shelf Life, 23(January 2019), 100426.
Burgos-Díaz, C., Hernández, X., Wandersleben, T., Barahona, T., Medina, C., Quiroz, A., & Rubilar, M. (2018). Influence of multilayer O/W emulsions stabilized by proteins from a novel lupin variety AluProt-CGNA and ionic polysaccharides on D-limonene retention during spray-drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 536(October 2016), 234-241.
Cacciatore, F. A., Dalmás, M., Maders, C., Ataíde Isaía, H., Brandelli, A., & Silva Malheiros, P. da (2020). Carvacrol encapsulation into nanostructures: Characterization and antimicrobial activity against foodborne pathogens adhered to stainless steel. Food Research International, 133(March), 109143.
Chalco-Sandoval, W., Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2015). Optimization of solvents for the encapsulation of a phase change material in polymeric matrices by electro-hydrodynamic processing of interest in temperature buffering food applications. European Polymer Journal, 72, 23-33.
Chalco-Sandoval, W., Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2017). Use of phase change materials to develop electrospun coatings of interest in food packaging applications. Journal of Food Engineering, 192, 122-128.
Chan, E. S., Wong, S. L., Lee, P. P., Lee, J. S., Ti, T. B., Zhang, Z., Poncelet, D., Ravindra, P., Phan, S. H., & Yim, Z. H. (2011). Effects of starch filler on the physical properties of lyophilized calcium-alginate beads and the viability of encapsulated cells. Carbohydrate Polymers, 83(1), 225-232.
Chan, L. W., Lee, H. Y., & Heng, P. W. S. (2006). Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydrate Polymers, 63(2), 176-187.
Chen, H., Li, L., Ma, Y., Mcdonald, T. P., & Wang, Y. (2019). Development of active packaging film containing bioactive components encapsulated in β-cyclodextrin and its application. Food Hydrocolloids, 90(December 2018), 360-366.
Chen, S., Zhang, Y., Han, Y., McClements, D. J., Liao, W., Mao, L., Yuan, F., & Gao, Y. (2020). Fabrication of multilayer structural microparticles for co-encapsulating coenzyme Q10 and piperine: Effect of the encapsulation location and interface thickness. Food Hydrocolloids, 109(17), 106090.
Comunian, T. A., Chaves, I. E., Thomazini, M., Moraes, I. C. F., Ferro-Furtado, R., Castro, I. A. de, & Favaro-Trindade, C. S. (2017). Development of functional yogurt containing free and encapsulated echium oil, phytosterol and sinapic acid. Food Chemistry, 237, 948-956.
Comunian, T. A., Silva, M. P., Moraes, I. C. F., & Favaro-Trindade, C. S. (2020). Reducing carotenoid loss during storage by co-encapsulation of pequi and buriti oils in oil-in-water emulsions followed by freeze-drying: Use of heated and unheated whey protein isolates as emulsifiers. Food Research International, 130(December 2019), 108901.
Dag, D., Guner, S., & Oztop, M. H. (2019). Physicochemical mechanisms of different biopolymers’ (lysozyme, gum arabic, whey protein, chitosan) adsorption on green tea extract loaded liposomes. International Journal of Biological Macromolecules, 138, 473-482.
Delshadi, R., Bahrami, A., Tafti, A. G., Barba, F. J., & Williams, L. L. (2020). Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends in Food Science & Technology, 104 (October 2020), 72-83.
Dhillon, P., Singh, K., & Kaur, K. (2020). The benefits of probiotic interventions in maternal-fetal health: An appraise review. PharmaNutrition, 13(May), 100211.
Eghbal, N., & Choudhary, R. (2018). Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT - Food Science and Technology, 90(December 2017), 254-264.
Fang, S., Zhao, X., Liu, Y., Liang, X., & Yang, Y. (2019). Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocolloids, 93(May 2018), 102-110.
FAO/WHO/UNU (2001). Human energy requirements. Report of a joint FAO/WHO/UNU expert consultation. Rome: Food and Agriculture Organization.
Favaro-Trindade, C. S., Pinho, S. C., & Rocha, G. A. (2008). Revisão: Microencapsulação de ingredientes alimentícios. Brazilian Journal of Food Tecnology, 11(2), 103-112.
Fernando, I. P. S., Lee, W. W., Han, E. J., & Ahn, G. (2020). Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chemical Engineering Journal, 391(July 2019), 123823.
Ferreira, S., & Nicoletti, V. R. (2021). Microencapsulation of ginger oil by complex coacervation using atomization: Effects of polymer ratio and wall material concentration. Journal of Food Engineering, 291(July 2020), 110214.
Geranpour, M., Assadpour, E., & Jafari, S. M. (2020). Recent advances in the spray drying encapsulation of essential fatty acids and functional oils. Trends in Food Science and Technology, 102(January), 71-90.
Giacometti, J., Bursać Kovačević, D., Putnik, P., Gabrić, D., Bilušić, T., Krešić, G., Stulić, V., Barba, F. J., Chemat, F., Barbosa-Cánovas, G., & Režek Jambrak, A. (2018). Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International, 113(June), 245-262.
Gomez-Estaca, J., Comunian, T. A., Montero, P., Ferro-Furtado, R., & Favaro-Trindade, C. S. (2016). Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin-cashew gum complex. Food Hydrocolloids, 61, 155-162.
Gómez-Mascaraque, L. G., Hernández-Rojas, M., Tarancón, P., Tenon, M., Feuillère, N., Vélez Ruiz, J. F., Fiszman, S., & López-Rubio, A. (2017). Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits. LWT - Food Science and Technology, 81, 77-86.
Griffin, K., & Khouryieh, H. (2020). Influence of electrostatic interactions on the formation and stability of multilayer fish oil-in-water emulsions stabilized by whey protein-xanthan-locust bean complexes. Journal of Food Engineering, 277(September 2019), 109893.
Haas, K., Dohnal, T., Andreu, P., Zehetner, E., Kiesslich, A., Volkert, M., Fryer, P., & Jaeger, H. (2020). Particle engineering for improved stability and handling properties of carrot concentrate powders using fluidized bed granulation and agglomeration. Powder Technology, 370, 104-115.
Haghighat-Kharazi, S., Jafar, M. M., Kasaai, M. R., & Khajeh, K. (2019). Use of encapsulated maltogenic amylase in malotodextrins with different formulations in making gluten-free breads. Lwt, 110(November 2018), 182-189.
Han, S., Chen, Y., Lyu, S., Chen, Z., Wang, S., & Fu, F. (2020). Effects of processing conditions on the properties of paraffin/melamine-urea-formaldehyde microcapsules prepared by in situ polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585(September 2019), 124046.
Hernández-Barrueta, T., Martínez-Bustos, F., Castaño-Tostado, E., Lee, Y., Miller, M. J., & Amaya-Llano, S. L. (2020). Encapsulation of probiotics in whey protein isolate and modified huauzontle’s starch: An approach to avoid fermentation and stabilize polyphenol compounds in a ready-to-drink probiotic green tea. Lwt, 124(January), 109131.
Hernández-Nava, R., López-Malo, A., Palou, E., Ramírez-Corona, N., & Jiménez-Munguía, M. T. (2020). Encapsulation of oregano essential oil (Origanum vulgare) by complex coacervation between gelatin and chia mucilage and its properties after spray drying. Food Hydrocolloids, 109(January), 106077.
Hu, J., Zhang, Y., Xiao, Z., & Wang, X. (2018). Preparation and properties of cinnamon-thyme-ginger composite essential oil nanocapsules. Industrial Crops and Products, 122(October 2017), 85-92.
Hu, Y., Shu, J., Zhang, X., Zhao, A., Liu, Y., Li, R., Di, Y., Xu, H., & Gan, Z. (2020). Encapsulation of colloid perovskite nanocrystals into solid polymer matrices: Impact on electronic transition and photoluminescence. Journal of Luminescence, 219(July 2019), 116938.
Islam, M., Mahmud, N., Nawas, T., Fang, Y., & Xia, W. (2018). Health Benefits and Spray Drying Microencapsulation Process of Fish Oil (Omega-3). American Journal of Food Science and Nutrition Research, 5(2), 29.
Jamshidi, A., Cao, H., Xiao, J., & Simal-Gandara, J. (2020). Advantages of techniques to fortify food products with the benefits of fish oil. Food Research International, 137(January), 109353.
Jiang, G. L., & Zhu, M. J. (2019). Preparation of astaxanthin-encapsulated complex with zein and oligochitosan and its application in food processing. Lwt, 106(October 2018), 179-185.
Kailasapathy, K., & Lam, S. H. (2005). Application of encapsulated enzymes to accelerate cheese ripening. International Dairy Journal, 15(6–9), 929-939.
Kamanina, O. A., Lavrova, D. G., Arlyapov, V. A., Alferov, V. A., & Ponamoreva, O. N. (2016). Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater. Enzyme and Microbial Technology, 92, 94-98.
Kim, E. H. J., Paredes, D., Motoi, L., Eckert, M., Wadamori, Y., Tartaglia, J., Green, C., Hedderley, D. I., & Morgenstern, M. P. (2019). Dynamic flavor perception of encapsulated flavors in a soft chewable matrix. Food Research International, 123(December 2018), 241-250.
Kim, J. G., Lee, E., Kim, S. H., Whang, K. Y., Oh, S., & Imm, J. Y. (2009). Effects of a Lactobacillus casei 393 fermented milk product on bone metabolism in ovariectomised rats. International Dairy Journal, 19(11), 690-695.
Kim, Y. A., Keogh, J. B., & Clifton, P. M. (2018). Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutrition Research Reviews, 31(1), 35-51.
Kurozawa, L. E., & Hubinger, M. D. (2017). Hydrophilic food compounds encapsulation by ionic gelation. Current Opinion in Food Science, 15, 50-55.
Lehmann, S. E., Hartge, E. U., Jongsma, A., deLeeuw, I. M., Innings, F., & Heinrich, S. (2019). Fluidization characteristics of cohesive powders in vibrated fluidized bed drying at low vibration frequencies. Powder Technology, 357, 54-63.
Li, K., Wang, B., Wang, W., Liu, G., Ge, W., Zhang, M., Yue, B., & Kong, M. (2019). Microencapsulation of Lactobacillus casei BNCC 134415 under lyophilization enhances cell viability during cold storage and pasteurization, and in simulated gastrointestinal fluids. Lwt, 116(July), 108521
Li, T., Teng, D., Mao, R., Hao, Y., Wang, X., & Wang, J. (2020). A critical review of antibiotic resistance in probiotic bacteria. Food Research International, 136(July), 109571.
Librán, C. M., Castro, S., & Lagaron, J. M. (2017). Encapsulation by electrospray coating atomization of probiotic strains. Innovative Food Science and Emerging Technologies, 39, 216-222.
Liu, C., Tan, Y., Xu, Y., McCleiments, D. J., & Wang, D. (2019). Formation, characterization, and application of chitosan/pectin-stabilized multilayer emulsions as astaxanthin delivery systems. International Journal of Biological Macromolecules, 140, 985-997.
Long, J., Pan, T., Xie, Z., Xu, X., & Jin, Z. (2020). Co-immobilization of β-fructofuranosidase and glucose oxidase improves the stability of Bi-enzymes and the production of lactosucrose. Lwt, 128(April 2019), 109460.
Lu, Y., Xiao, X., Liu, Y., Wang, J., Qi, S., Huan, C., Liu, H., Zhu, Y., & Xu, G. (2020). Achieving multifunctional smart textile with long afterglow and thermo-regulation via coaxial electrospinning. Journal of Alloys and Compounds, 812, 152144.
Malar, C. G., Seenuvasan, M., Kumar, K. S., Kumar, A., & Parthiban, R. (2020). Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect. Biochemical Engineering Journal, 158(March), 10754.
Martins, N., Roriz, C. L., Morales, P., Barros, L., & Ferreira, I. C. F. R. (2016). Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science and Technology, 52, 1-15.
Menin, A., Zanoni, F., Vakarelova, M., Chignola, R., Donà, G., Rizzi, C., Mainente, F., & Zoccatelli, G. (2018). Effects of microencapsulation by ionic gelation on the oxidative stability of flaxseed oil. Food Chemistry, 269(June), 293-299.
Michalska, A., & Lech, K. (2018). The Effect of Carrier Quantity and Drying Method on the Physical Properties of Apple Juice Powders. Beverages, 4(2), 1-15.
Microencapsulação. (2017). A tecnologia da microencapsulação de ingredientes. Food Ingredients Brasil, (42), 18-26.
Mogensen, K. M. (2017). Essential fatty acid deficiency. Practical Gastroenterology, 41(6), 37-44.
Mörschbächer, A. P., Volpato, G., & Souza, C. F. V. de. (2016). Kluyveromyces lactis β-galactosidase immobilization in calcium alginate spheres and gelatin for hydrolysis of cheese whey lactose. Ciência Rural, 46(5), 921-926.
Moura, S. C. S. R. de, Berling, C. L., Garcia, A. O., Queiroz, M. B., Alvim, I. D., & Hubinger, M. D. (2019). Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Research International, 121(December 2018), 542-552.
Muriel Mundo, J. L., Zhou, H., Tan, Y., Liu, J., & McClements, D. J. (2020). Stabilization of soybean oil-in-water emulsions using polypeptide multilayers: Cationic polylysine and anionic polyglutamic acid. Food Research International, 137(May), 109304.
Nascimento, M. A. do, Silva, L. C. da, Mendes, L. G., Furtado, R. F., Costa, J. M. C. da, Biswas, A., Cheng, H. N., & Alves, C. R. (2020). Pequi oil microencapsulation by complex coacervation using gelatin-cashew gum. International Journal of Food Studies, 9(2020), 97-109.
Nguon, O., Lagugné-Labarthet, F., Brandys, F. A., Li, J., & Gillies, E. R. (2018). Microencapsulation by in situ Polymerization of Amino Resins. Polymer Reviews, 58(2), 326-375.
Nikoo, A. M., Kadkhodaee, R., Ghorani, B., Razzaq, H., & Tucker, N. (2018). Electrospray-assisted encapsulation of caffeine in alginate microhydrogels. International Journal of Biological Macromolecules, 116, 208-216.
Niu, B., Shao, P., Luo, Y., & Sun, P. (2020). Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application. Food Hydrocolloids, 99(September 2019), 105376.
Oliveira, W. Q. de, Wurlitzer, N. J., Araújo, A. W. de O., Comunian, T. A., Bastos, M. do S. R., Oliveira, A. L. de, Magalhães, H. C. R., Ribeiro, H. L., Figueiredo, R. W. de, & Sousa, P. H. M. de (2020). Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food Research International, 131(October 2019), 109047.
Ozkan, G., Franco, P., Marco, I. de, Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272(July 2018), 494-506.
Petito, N. de L., Dias, D. da S., Costa, V. G., Falcão, D. Q., & Araujo, K. G. de Lima. (2016). Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin. Food Chemistry, 208, 124-131.
Quigley, E. M. M. (2019). Prebiotics and Probiotics in Digestive Health. Clinical Gastroenterology and Hepatology, 17(2), 333-344.
Radünz, M., Hackbart, H. C. dos S., Camargo, T. M., Nunes, C. F. P., Barros, F. A. P., Magro, J. D., Sanches Filho, P. J., Gandra, E. A., & Zavareza, E. da R. (2020). Antimicrobial potential of spray drying encapsulated thyme (Thymus vulgaris) essential oil on the conservation of hamburger-like meat products. International Journal of Food Microbiology, 330, 108696.
Rahim, S. N. A., Sulaiman, A., Hamzah, F., Hamid, K. H. K., Rodhi, M. N. M., Musa, M., & Edama, N. A. (2013). Enzymes encapsulation within calcium alginate-clay beads: Characterization and application for cassava slurry saccharification. Procedia Engineering, 68, 411-417.
Rajkumar, V., Gunasekaran, C., Paul, C. A., & Dharmaraj, J. (2020). Development of encapsulated peppermint essential oil in chitosan nanoparticles: Characterization and biological efficacy against stored-grain pest control. Pesticide Biochemistry and Physiology, 170(November 2020), 104679.
Ré, M. I. (2000). Microencapsulação: Em busca de produtos inteligentes. Ciência Hoje, 27(162), 24-29.
Rios-Mera, J. D., Saldaña, E., Ramírez, Y., Auquiñivín, E. A., Alvim, I. D., & Contreras-Castillo, C. J. (2019). Encapsulation optimization and pH- and temperature-stability of the complex coacervation between soy protein isolate and inulin entrapping fish oil. Lwt, 116(March), 108555.
Rodrigues, R. M., Ramos, P. E., Cerqueira, M. F., Teixeira, J. A., Vicente, A. A., Pastrana, L. M., Pereira, R. N., & Cerqueira, M. A. (2020). Electrosprayed whey protein-based nanocapsules for β-carotene encapsulation. Food Chemistry, 314(January), 126157.
Romero-Fernández, M., & Paradisi, F. (2020). Protein immobilization technology for flow biocatalysis. Current Opinion in Chemical Biology, 55, 1-8.
Ruiz, J. C. R., Vazquez, E. D. L. L. O., & Campos, M. R. S. (2017). Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods. Critical Reviews in Food Science and Nutrition, 57(7), 1423–1434.
Rutz, J. K., Borges, C. D., Zambiazi, R. C., Crizel-Cardozo, M. M., Kuck, L. S., & Noreña, C. P. Z. (2017). Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry, 220, 59-66.
Saifullah, M., Shishir, M. R. I., Ferdowsi, R., Rahman, R. T., & Vuong, Q. van (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends in Food Science and Technology, 86(September 2018), 230-251.
Sharma, S., Cheng, S. F., Bhattacharya, B., & Chakkaravarthi, S. (2019). Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends in Food Science and Technology, 91(August 2018), 305-318.
Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology, 65, 49-67.
Shishir, M. R. I., Taip, F. S., Saifullah, M., Aziz, N. A., & Talib, R. A. (2017). Effect of packaging materials and storage temperature on the retention of physicochemical properties of vacuum packed pink guava powder. Food Packaging and Shelf Life, 12(October 2016), 83-90.
Shishir, M. R. I., Xie, L., Sun, C., Zheng, X., & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science and Technology, 78(May), 34-60.
Silva, L. C. da, Nascimento, M. A. do, Mendes, L. G., Furtado, R. F., Costa, J. M. C. da, & Cardoso, A. L. H (2017). Optimization of cashew gum and chitosan for microencapsulation of pequi oil by complex coacervation. Journal of Food Processing and Preservation, 42(3), 1-8.
Singh, T. A.; Jajoo, A., & Bhasin, S. (2020). Optimization of various encapsulation systems for efficient immobilization of actinobacterial glucose isomerase. Biocatalysis and Agricultural Biotechnology, 29(October 2020), 101766.
Souza Simões, L. de, Madalena, D. A., Pinheiro, A. C., Teixeira, J. A., Vicente, A. A., & Ramos, Ó. L. (2017). Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science, 243, 23-45.
Suave, J., Dall’agnol, E. C., Pezzin, A. T. T., Silva, D. A. K., Meirer, M. M., & Soldi, V. (2006). Microencapsulação: Inovação em diferentes áreas. Revista Saúde e Ambiente / Health and Environment Journal, 7(2), 12-20.
Sultana, A., Miyamoto, A., Lan Hy, Q., Tanaka, Y., Fushimi, Y., & Yoshii, H. (2017). Microencapsulation of flavors by spray drying using Saccharomyces cerevisiae. Journal of Food Engineering, 199, 36-41.
Taban, A., Saharkhiz, M. J., & Khorram, M. (2020). Formulation and assessment of nano-encapsulated bioherbicides based on biopolymers and essential oil. Industrial Crops and Products, 149(January), 112348.
Tallima, H., & El Ridi, R. (2018). Arachidonic acid: Physiological roles and potential health benefits – A review. Journal of Advanced Research, 11, 33-41.
Tang, Y., Scher, H. B., & Jeoh, T. (2020). Industrially scalable complex coacervation process to microencapsulate food ingredients. Innovative Food Science and Emerging Technologies, 59(June 2019), 102257.
Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276-1286.
Trucillo, P., Campardelli, R., & Reverchon, E. (2018). Production of liposomes loaded with antioxidants using a supercritical CO2 assisted process. Powder Technology, 323, 155-162.
UNESP. (2015). Tipos de Revisão de Literatura. Recuperado em 29 maio, 2021, de https://docplayer.com.br/12500538-Tipos-de-revisao-de-literatura.html
Valldeperas, M., Salis, A., Barauskas, J., Tiberg, F., Arnebrant, T., Razumas, V., Monduzzi, M., & Nylander, T. (2019). Enzyme encapsulation in nanostructured self-assembled structures: Toward biofunctional supramolecular assemblies. Current Opinion in Colloid and Interface Science, 44, 130-142.
Vinceković, M., Viskić, M., Jurić, S., Giacometti, J., Bursać Kovačević, D., Putnik, P., Donsì, F., Barba, F. J., & Režek Jambrak, A. (2017). Innovative technologies for encapsulation of Mediterranean plants extracts. Trends in Food Science and Technology, 69, 1-12.
Wang, X., Yu, H., Li, L., & Zhao, M. (2016). Research on temperature dependent effective thermal conductivity of composite-phase change materials (PCMs) wall based on steady-state method in a thermal chamber. Energy and Buildings, 26(August 2016), 408-414.
Waterhouse, G. I. N., & Sun-Waterhouse, D. (2019). Encapsulation systems containing multi-nutrients/bioactives: From molecular scale to industrial scale. In Encyclopedia of Food Chemistry, 687-694.
Wen, P., Zong, M. H., Linhardt, R. J., Feng, K., & Wu, H. (2017). Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends in Food Science and Technology, 70(July), 56-68.
Wilkerson, J. W., Yang, S. O., Funk, P. J., Stanley, S. K., & Bundy, B. C. (2018). Nanoreactors: Strategies to encapsulate enzyme biocatalysts in virus-like particles. New Biotechnology, 44(September 2017), 59–63.
Wong, J. K. H., Tan, H. K., Lau, S. Y., Yap, P. S., & Danquah, M. K. (2019). Potential and challenges of enzyme incorporated nanotechnology in dye wastewater treatment: A review. Journal of Environmental Chemical Engineering, 7(4), 103261.
Xiao, Z., Hou, W., Kang, Y., Niu, Y., & Kou, X. (2019). Encapsulation and sustained release properties of watermelon flavor and its characteristic aroma compounds from γ-cyclodextrin inclusion complexes. Food Hydrocolloids, 97(100), 105202.
Yan, L., Wang, R., Wang, H., Sheng, K., Liu, C., Qu, H., Ma, A., & Zheng, L. (2018). Formulation and characterization of chitosan hydrochloride and carboxymethyl chitosan encapsulated quercetin nanoparticles for controlled applications in foods system and simulated gastrointestinal condition. Food Hydrocolloids, 84(June), 450-457.
Yin, Y., & Cadwallader, K. R. (2019). Spray-chilling encapsulation of 2-acetyl-1-pyrroline zinc chloride using hydrophobic materials: Storage stability and flavor application in food. Food Chemistry, 278(December 2018), 738-743.
Zaeim, D., Sarabi-Jamab, M., Ghorani, B., Kadkhodaee, R., & Tromp, R. H. (2017). Electrospray assisted fabrication of hydrogel microcapsules by single- and double-stage procedures for encapsulation of probiotics. Food and Bioproducts Processing, 102, 250-259.
Zambrano-Zaragoza, M. L., & Quintanar-Guerrero, D. (2019). Novel techniques for extrusion, agglomeration, encapsulation, gelation, and coating of foods. Encyclopedia of Food Security and Sustainability, 1, 379-392.
Zhang, R., Belwal, T., Li, L., Lin, X., Xu, Y., & Luo, Z. (2020). Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydrate Polymers, 242(January), 116388.
Zhang, Y., Mustapha, A. N., Zhang, X., Baiocco, D., Wellio, G., Davies, T., Zhang, Z., & Li, Y. (2020). Improved volatile cargo retention and mechanical properties of capsules via sediment-free in situ polymerization with cross-linked poly(vinyl alcohol) as an emulsifier. Journal of Colloid and Interface Science, 568(June 2019), 155-164.
Zhou, D., Pan, Y., Ye, J., Jia, J., Ma, J., & Ge, F. (2017). Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil. LWT - Food Science and Technology, 83, 292-297.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Tiago Linhares Cruz Tabosa Barroso; Joana de Barros Alexandre; Luana Carvalho da Silva; Rachel Menezes Castelo; Laiza Brito Ribeiro; Roselayne Ferro Furtado; Rafael Audino Zambelli
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.