Mecanismo de acción de La alcachofa (Cynara Scolymus L.) en el control glucémico: Uma revisión sistemática

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i7.16273

Palabras clave:

Inhibición; Cynara Scolymus; Reducción de glucosa en sangre; Diabetes Mellitus.

Resumen

La diabetes mellitus genera un grave problema para el sistema de salud y para las personas, caracterizándose por un trastorno crónico, que afecta el metabolismo de carbohidratos, grasas y proteínas. El presente estudio tiene como objetivo realizar una revisión de la literatura que demuestre los mecanismos de acción de la alcachofa en el control glucémico. Se realizó una búsqueda electrónica en Scielo, Pubmed, Science direct y Google Scholar, comparando la diferente información encontrada en estas plataformas, enumerando los mecanismos de acción de la alcachofa en el control glucémico en diabetes mellitus. Se recopilaron 63 artículos científicos en portugués, inglés y español, de los cuales el 17,5% abordó la composición de la alcachofa, su contenido fenólico y efectos antihiperglucémicos, el 13% describe polifenoles, flavonoides y su acción antihiperglucémica, el 16% informa sobre la regulación de la α-glicosidasa, 6% aborda el transporte de glucosa a través de GLUT; El 6% sobre la secreción de insulina por las células beta pancreáticas, el 13% informa sobre la regulación del metabolismo hepático de la glucosa, el 11% informa sobre la eliminación renal de la glucosa, el 9,5% sobre la diabetes y sus complicaciones y el 8% se ocupa de otras plantas y compuestos naturales con acción similar a la alcachofa. Según los resultados, la posible acción de la alcachofa y sus metabolitos especiales está en la inhibición de la alfa-glucosidasa, y sumar su importante acción en la reducción de radicales libres, reducción de glucagón, mantenimiento hepático del metabolismo glucémico, protección de beta- células pancreáticas, aumento de los niveles de insulina y captación de glucosa en los tejidos, factores importantes en la homeostasis glucémica. Por otro lado, el uso de flavonoides es una de las dianas más utilizadas en la literatura para el control glucémico a medio y largo plazo. Con la presente revisión, es posible concluir que todas las vías mencionadas anteriormente, se convierte en algo prometedor en la búsqueda de tratamientos complementarios de control glucémico en personas con diabetes mellitus.

Citas

Abbas, G., Al-Harrasi, A. S., & Hussain, H. (2017). α-Glucosidase Enzyme Inhibitors from Natural Products. In G. Brahmachari (Ed.), Discovery and Development of Antidiabetic Agents from Natural Products: Natural Product Drug Discovery. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809450-1.00009-0

Abdel-Salam, O. M. E., Sleem, A. A., & Shafee, N. (2013). Hepatoprotective effects of Cynara extract and silymarin on carbon tetrachloride-induced hepatic damage in rats. Comparative Clinical Pathology, 23(3). https://doi.org/10.1007/s00580-012-1675-3

Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 1–35. https://doi.org/10.3390/biom9090430

Amorim, R. G., Guedes, G. da S., Vasconcelos, S. M. de L., & Santos, J. C. de F. (2019). Doença Renal do Diabetes: Cross-Linking entre Hiperglicemia, Desequilíbrio Redox e Inflamação. Arquivos Brasileiros de Cardiologia, 112(5), 577–587. https://doi.org/10.5935/abc.20190077

Aronoff, S. L., MD, FACP, FACE, Berkowitz, K., APRN, BC, FNP, CDE, Shreiner, B., RN, MN, CDE, BC-ADM, & Want, L. (2004). Glucose Metabolism and Regulation: Beyond Insulin and Glucagon. Diabetes Spectrum, 17(3), 183–190. https://doi.org/10.2337/diaspect.17.3.183

Aryaeian, N., Sedehi, S. K., & Arablou, T. (2017). Polyphenols and their effects on diabetes management: A review. Medical Journal of the Islamic Republic of Iran, 31(1), 1–14. https://doi.org/10.14196/mjiri.31.134

Ben Salem, M., Ben Abdallah Kolsi, R., Dhouibi, R., Ksouda, K., Charfi, S., Yaich, M., Hammami, S., Sahnoun, Z., Zeghal, K. M., Jamoussi, K., & Affes, H. (2017). Protective effects of Cynara scolymus leaves extract on metabolic disorders and oxidative stress in alloxan-diabetic rats. BMC Complementary and Alternative Medicine, 17(1), 1–19. https://doi.org/10.1186/s12906-017-1835-8

Bose, M., Lambert, J. D., Ju, J., Reuhl, K. R., Shapses, S. A., & Yang, C. S. (2008). The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. Journal of Nutrition, 138(9), 1677–1683. https://doi.org/10.1093/jn/138.9.1677

Braga, C. de M. (2011). Histórico da utilização de plantas medicinais. 1–24. https://www.bdm.unb.br/bitstream/10483/1856/1/2011_CarladeMoraisBraga.pdf

Campbell, M. K., & Farrell, S. O. (2016). Bioquímica (2. ed, pp. 1–795). https://integrada.minhabiblioteca.com.br/books/9788522125005.

Carvalheira, J. B. C., Zecchin, H. G., & Saad, M. J. A. (2002). Vias de Sinalização da Insulina. Arquivos Brasileiros de Endocrinologia & Metabologia, 46(4), 419–425. https://doi.org/10.1590/s0004-27302002000400013

Cerf, M. E. (2013). Beta cell dysfunction and insulin resistance. Frontiers in Endocrinology, 4(MAR), 1–13. https://doi.org/10.3389/fendo.2013.00037

Christensen, A. A., & Gannon, M. (2019). The Beta Cell in Type 2 Diabetes. Current Diabetes Reports, 19(9), 1–8. https://doi.org/10.1007/s11892-019-1196-4

Dragan, S., Andrica, F., Serban, M.-C., & Timar, R. (2014). Polyphenols-Rich Natural Products for Treatment of Diabetes. Current Medicinal Chemistry, 22(1), 14–22. https://doi.org/10.2174/0929867321666140826115422

El Sayed, A. M., Hussein, R., Motaal, A. A., Fouad, M. A., Aziz, M. A., & El-Sayed, A. (2018). Artichoke edible parts are hepatoprotective as commercial leaf preparation. Revista Brasileira de Farmacognosia, 28(2), 165–178. https://doi.org/10.1016/j.bjp.2018.01.002

Ernst, H. A., Lo Leggio, L., Willemoës, M., Leonard, G., Blum, P., & Larsen, S. (2006). Structure of the Sulfolobus solfataricus α-Glucosidase: Implications for Domain Conservation and Substrate Recognition in GH31. Journal of Molecular Biology, 358(4), 1106–1124. https://doi.org/10.1016/j.jmb.2006.02.056

Fantini, N., Colombo, G., Giori, A., Riva, A., Morazzoni, P., Bombardelli, E., & Carai, M. A. M. (2011). Evidence of glycemia-lowering effect by a Cynara scolymus L. extract in normal and obese rats. Phytotherapy Research, 25(3), 463–466. https://doi.org/10.1002/ptr.3285

Fernandes, A. C. F. (2020). Explorando in vitro o efeito antiglicante, inibidor de enzimas digestivas e anti-inflamatório de extratos fenólicos de resíduos agroindustriais. Unicamp, 21(1), 1–9. http://repositorio.unicamp.br/handle/REPOSIP/346970.

Ferrier, D. R. (2018). Bioquímica ilustrada. (7.ed). https://integrada.minhabiblioteca.com.br/books/9788582714867.

Frutos, M. J., Ruiz-Cano, D., Valero-Cases, E., Zamora, S., & Pérez-Llamas, F. (2018). Artichoke (Cynara scolymus L.). In Nonvitamin and Nonmineral Nutritional Supplements (Nabavi, Se, Issue 2006, pp. 135–138). Elsevier Inc. https://doi.org/10.1016/B978-0-12-812491-8.00018-7

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(17), 1–34. https://doi.org/10.3390/ijms21176275

Gallo, L. A., Wright, E. M., & Vallon, V. (2015). Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences. Diabetes and Vascular Disease Research, 12(2), 78–89. https://doi.org/10.1177/1479164114561992

Ghani, U. (2020a). Introduction, rationale and the current clinical status of oral α-glucosidase inhibitors. In U. Ghani (Ed.), Alpha-Glucosidase Inhibitors (pp. 1–15). Elsevier. https://doi.org/10.1016/b978-0-08-102779-0.00001-0

Ghani, U. (2020b). Polyphenols. In U. Ghani (Ed.), Alpha-Glucosidase Inhibitors (pp. 61–100). Elsevier. https://doi.org/10.1016/B978-0-08-102779-0.00003-4

Grandi, T. S. M. (2014). Tratado das plantas Medicinais: Mineiras, Nativas e Cultivadas (pp. 7–1186).

Hahr, A. J., & Molitch, M. E. (2015). Management of diabetes mellitus in patients with chronic kidney disease. Clinical Diabetes and Endocrinology, 1(2), 1–9. https://doi.org/10.1186/s40842-015-0001-9

Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., & Poutanen, K. (2010). Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences, 11(4), 1365–1402. https://doi.org/10.3390/ijms11041365

Hosseini, S. E., Mousaei, S., & Tavakoli, F. (2015). Effect of hydro alcoholic extract of artichoke on diabetes treatment and liver enzymes in diabetic adult male rats. Advanced Herbal Medicine, 1(1), 17–21. http://herbmed.skums.ac.ir/article_11234_1514.html

Idf, I. D. F. (2019). International Diabetes Federation. In The Lancet (9°). https://www.idf.org/e-library/welcome/copyright-permission.html

Jung, U. J., Lee, M. K., Park, Y. B., Kang, M. A., & Choi, M. S. (2006). Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. International Journal of Biochemistry and Cell Biology, 38(7), 1134–1145. https://doi.org/10.1016/j.biocel.2005.12.002

Klover, P. J., & Mooney, R. A. (2004). Hepatocytes: Critical for glucose homeostasis. International Journal of Biochemistry and Cell Biology, 36(5), 753–758. https://doi.org/10.1016/j.biocel.2003.10.002

Lattanzio, V., Kroon, P. A., Linsalata, V., & Cardinali, A. (2009). Globe artichoke: A functional food and source of nutraceutical ingredients. Journal of Functional Foods, 1(2), 131–144. https://doi.org/10.1016/j.jff.2009.01.002

Lyra, R., Oliveira, M., Lins, D., Cavalcanti, N., Gross, J. L., Maia, F. F. R., Araújo, L. R., Yafi, M., Guimarães, F. P. D. M., Takayanagui, A. M. M., Lucena, J. B. D. S., Golbert, A., Campos, M. A. a., Saúde, M. da, Sartorelli, D. S., Franco, L. J., Prevenção, E., & Marcondes, J. a. M. (2020). Sociedade Brasileira de Diabetes. In E. C. Clannad (Ed.), Diabetes Mellitus Tipo 1 e Tipo2 (Vol. 5, Issue 3).

Mahboubi, M. (2018). Cynara scolymus (artichoke) and its efficacy in management of obesity. Bulletin of Faculty of Pharmacy, Cairo University, 56(2), 115–120. https://doi.org/10.1016/j.bfopcu.2018.10.003

Malta, D. C., & Silva Jr, J. B. da. (2013). O Plano de Ações Estratégicas para o Enfrentamento das Doenças Crônicas Não Transmissíveis no Brasil e a definição das metas globais para o enfrentamento dessas doenças até 2025: uma revisão. Epidemiologia e Serviços de Saúde, 22(1), 151–164. https://doi.org/10.5123/s1679-49742013000100016

Mejri, F., Baati, T., Martins, A., Selmi, S., Luisa Serralheiro, M., Falé, P. L., Rauter, A., Casabianca, H., & Hosni, K. (2020). Phytochemical analysis and in vitro and in vivo evaluation of biological activities of artichoke (Cynara scolymus L.) floral stems: Towards the valorization of food by-products. Food Chemistry, 333(July), 127–506. https://doi.org/10.1016/j.foodchem.2020.127506

Mishra, S., Singh, A. S., Mishra, N., Pandey, H., & Tiwari, V. K. (2017). Carbohydrate-Based Antidiabetic Agents from Nature. In Discovery and Development of Antidiabetic Agents from Natural Products: Natural Product Drug Discovery. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809450-1.00005-3

Moore, M. C., Coate, K. C., Winnick, J. J., An, Z., & Cherrington, A. D. (2012). Regulation of Hepatic Glucose Uptake and Storage In Vivo1,2. American Society for Nutrition, 286–294. https://doi.org/10.3945/an.112.002089

Moradi-Marjaneh, R., Paseban, M., & Sahebkar, A. (2019). Natural products with SGLT2 inhibitory activity: Possibilities of application for the treatment of diabetes. Phytotherapy Research, 33(10), 2518–2530. https://doi.org/10.1002/ptr.6421

Muccilli, V., Cardullo, N., Spatafora, C., Cunsolo, V., & Tringali, C. (2017). α-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and 1H NMR. Food Chemistry, 215, 50–60. https://doi.org/10.1016/j.foodchem.2016.07.136

Mueckler, M., & Thorens, B. (2013). The SLC2 (GLUT) family of membrane transporters. Molecular Aspects of Medicine, 34(2–3), 121–138. https://doi.org/10.1016/j.mam.2012.07.001

Pereira, A., Shitsuka, D., Parreira, F., & Shitsuka, R. (2018). Metodologia da pesquisa Científica. In Metodologia da Pesquisa Científica (1. ed). https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.

Pires, L. da S. (2017). Efeito da inibição do SGLT-2 pela dapagliflozina no cérebro e na funcionalidade hipotalâmica em humanos e camundongos. Unicamp, 1–14. http://repositorio.unicamp.br/jspui/handle/REPOSIP/330857

Postic, C., & Girard, J. (2008). Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: Lessons from genetically engineered mice. Journal of Clinical Investigation, 118(3), 829–838. https://doi.org/10.1172/JCI34275

Rastija, V., Bešlo, D., & Nikolić, S. (2012). Two-dimensional quantitative structure–activity relationship study on polyphenols as inhibitors of a-glucosidase. Medicinal Chemistry Research, 21(12), 3984–3993. https://doi.org/10.1007/s00044-011-9938-0

Reddy, S. S. K., & Tan, M. (2020). Diabetes mellitus and its many complications. In M. Tan (Ed.), Diabetes Mellitus (pp. 1–18). Elsevier Inc. https://doi.org/10.1016/b978-0-12-820605-8.00001-2

Rezazadeh, K., & Ebrahimi-Mameghani, M. (2020). Artichoke leaf extract and use in metabolic syndrome as an antioxidant. In Pathology Oxidative Stress and Dietary Antioxidants (Pathology, pp. 169–177). Preedy, Victor R. https://doi.org/10.1016/b978-0-12-815972-9.00016-0

Rosak, C., & Mertes, G. (2012). Critical evaluation of the role of acarbose in the treatment of diabetes: Patient considerations. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 5, 357–367. https://doi.org/10.2147/dmso.s28340

Salem, M. Ben, Affes, H., Ksouda, K., Dhouibi, R., Sahnoun, Z., Hammami, S., & Zeghal, K. M. (2015). Pharmacological Studies of Artichoke Leaf Extract and Their Health Benefits. Plant Foods for Human Nutrition, 70(4), 441–453. https://doi.org/10.1007/s11130-015-0503-8

Salles, B. C. C., Silva, M. A. da, Taniguthi, L., Ferreira, J. N., Quintino da Rocha, C., Vilegas, W., Dias, P. H., Pennacchi, P. C., Maris da Silveira Duarte, S., Rodrigues, M. R., Lima Brigagão, M. R. P., & Borges de Araújo Paula, F. (2020). Passiflora edulis Leaf Extract: Evidence of antidiabetic and antiplatelet effects in rats. Biological and Pharmaceutical Bulletin, 43(1), 169–174. https://doi.org/10.1248/bpb.b18-00952

Salles, B. C. C., Terra, M. C., & Paula, F. B. de A. (2019). Sinalização mediada pela insulina em vias anabólicas. Generalist Pharmacy Journal, 1(2), 25–45.

Santos, C. M. M., Freitas, M., & Fernandes, E. (2018). A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. European Journal of Medicinal Chemistry, 157, 1460–1479. https://doi.org/10.1016/j.ejmech.2018.07.073

Sato, S., Takeo, J., Aoyama, C., & Kawahara, H. (2007). Na+-Glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens. Bioorganic and Medicinal Chemistry, 15(10), 3445–3449. https://doi.org/10.1016/j.bmc.2007.03.011

Saucier, C. (2013). Caracterização química das folha de alcachofra (Cynara scolymus L.) por cromatografia gasosa monodimensional e Bidimensional abrangente. Instituto de Química-Universidade Federal Do Rio Grande Do Sul, 1–109. http://hdl.handle.net/10183/80428

Sheliya, M. A., Rayhana, B., Ali, A., Pillai, K. K., Aeri, V., Sharma, M., & Mir, S. R. (2015). Inhibition of α-glucosidase by new prenylated flavonoids from euphorbia hirta L. herb. Journal of Ethnopharmacology, 176, 1–8. https://doi.org/10.1016/j.jep.2015.10.018

Sümer, E., Senturk, G. E., Demirel, Ö. U., & Yesilada, E. (2020). Comparative biochemical and histopathological evaluations proved that receptacle is the most effective part of Cynara scolymus against liver and kidney damages. Journal of Ethnopharmacology, 249(November), 112–458. https://doi.org/10.1016/j.jep.2019.112458

Taslimi, P., & Gulçin, İ. (2017). Antidiabetic potential: in vitro inhibition effects of some natural phenolic compounds on α-glycosidase and α-amylase enzymes. Journal of Biochemical and Molecular Toxicology, 31(10), 1–6. https://doi.org/10.1002/jbt.21956

Uezima, C. B. B., Zanella, M. T., Sachs, A., Pimazzoni Netto, A., & Zach, P. L. (2012). Efeitos do controle glicêmico obtido em curto prazo sobre a microalbuminúria e a filtração glomerular em pacientes diabéticos do tipo 2 com controle glicêmico precário. Jornal Brasileiro de Nefrologia, 34(2), 130–138. https://doi.org/10.1590/s0101-28002012000200005

Viegas Jr, C., Bolzani, V. da S., & Barreiro, E. J. (2006). Os produtos naturais e a química medicinal moderna. Química Nova, 29(2), 326–337. https://doi.org/10.1590/s0100-40422006000200025

Wolfram, S., Raederstorff, D., Preller, M., Wang, Y., Teixeira, S. R., Riegger, C., & Weber, P. (2006). Epigallocatechin gallate supplementation alleviates diabetes in rodents. Journal of Nutrition, 136(10), 2512–2518. https://doi.org/10.1093/jn/136.10.2512

World Health Organization. (2014). Global Status Report On Noncommunicable Diseases 2014. 7–302.

Zuorro, A., Maffei, G., & Lavecchia, R. (2016). Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. Journal of Cleaner Production, 111, 1–6. https://doi.org/10.1016/j.jclepro.2015.06.011

Publicado

14/06/2021

Cómo citar

OLIVEIRA, C. dos S. .; DOMINGUETI, C. B. .; SANTOS, G. B. .; SALLES, B. C. C. Mecanismo de acción de La alcachofa (Cynara Scolymus L.) en el control glucémico: Uma revisión sistemática. Research, Society and Development, [S. l.], v. 10, n. 7, p. e6610716273, 2021. DOI: 10.33448/rsd-v10i7.16273. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16273. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud