El uso de síntesis verde para obtener nanopartículas de plata a partir de extractos de girasol (Helianthus annuus)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i7.16795

Palabras clave:

Síntesis verde; Nanopartículas de plata; Nanotecnologia.

Resumen

La síntesis de nanopartículas de plata ha llamado la atención por sus propiedades y aplicaciones en diversos campos de la ciencia.Estas nanopartículas se pueden producir mediante diferentes métodos utilizando síntesis verde. Lo que se traduce en la minimización del coste de producción de las nanopartículas. Así, este trabajo tuvo como objetivo sintetizar nanopartículas de plata (AgNPs) estabilizadas en extractos de girasol (Helianthus annus). La producción de la nanopartícula se realizó en agitación sobre una placa magnética calentada hasta la configuración total de la nanopartícula, al final se utilizó el extracto vejetal para estabilizarla. Se caracterizaron mediante UV-VIS. El análisis antimicrobiano de las nanopartículas se realizó en una placa de Petri con la medida del tamaño del halo inhibidor formado. Los AgNP se obtuvieron en los espectros UV-vis alrededor de 20 nanómetros. Se verificó a través de los picos de absorción que varió - 414 nm a 422 nm (λmax 422 nm) que el extracto de Helianthus annuus fue capaz de estabilizarse con efecto de formación de halo en las líneas de S. aureus (16 mm), E coli (12 mm) y P. aeruginosa (10 mm), mientras que los AgNP que no se estabilizaron con girasol no presentaron halo inhibitorio. A través de esta investigación se pudo comprobar que la síntesis verde (SV), a pesar de ser un nuevo producto nanotecnológico con bases sostenibles, es una excelente alternativa con una alta reproducibilidad y está de acuerdo con los principios de la química verde, presentándose como una alternativa de bajo costo-efectivo, ecológico y biocompatible en la síntesis de AgNPs. Además de servir como subvención para futuras investigaciones

Biografía del autor/a

Taciany Alves Batista Lemos, Centro Universitário UniFacid

Centro Universitário UNIFACID/WYDEN, Brasil

Deuzuita dos Santos Freitas Viana , Centro Universitário UniFacid

Centro Universitário UNIFACID/WYDEN, Brasil

Vicente Galber Freitas Viana, Universidade Federal do Piauí

Universidade Federal do Piauí, Brasil

Girlene Soares de Figueirêdo, Universidade Federal do Piauí

Universidade Federal do Piauí, Brasil

Citas

Amkhande, P. G., et al, “Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications”, Journal of Drug Delivery Science and Technology, 53, 101174

Al-Shabib, N. A. et al. Bio-inspired facile fabrication of silver nanoparticles from in vitro grown shoots of Tamarix nilotica: explication of its potential in impeding growth and biofilms of Listeria monocytogenes and assessment of wound healing ability. RSC Advances, 10, 30139-30149

Atiyeh, B. S, Costagliola, M., & Hayek, S. Effect of silver on burn wound infection control and healing: review of the literature. Burns 33 (2): 139–48 Dibo SA

Bauer, A. W., et al. (1966) Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493-496.

Brinch, A., et al. EU regulation of nanobiocides: challenges in implementing the biocidal product regulation (BPR). Nanomaterials, 6, 33

Chaudhuri, R. G., & Paria, S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 112, 2373-433

CLSI. Clinical and Laboratory Standards Institude. Performance standards for antimicrobial disk susceptibility tests, approved standard-tenth edition M02-A10. 29.

Dasa, P., Ghosalb, K., Jana, N. K., et al. “Green synthesis and characterization of silver nanoparticles using belladonna mother tincture and its efficacy as a potential antibacterial and anti-inflammatory agent”, Material Chemistry and Physics 228, 310-317

Deshmukha, S. P. et al. “Silver nanoparticles as an effective disinfectant: A review”, Materials Science & Engineering C 97, 954-965

Georgiev, P. et al. Implementing atomic force microscopy (AFM) for studying kinetics of gold nanoparticle's growth. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, 154-163

Guo, S., Ge, Y., & Jom, K. A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chemistry Central Journal. 11, 1-10

Hong, H. R., et al. Facile fabrication of multifunctional fabrics: use of copper and silver nanoparticles for antibacterial, superhydrophobic, conductive fabrics. RSC advances, 8, 41782-41794

Ibrahim, T. A., Ajongbolo, K. F., & Aladekoyi, G. Phytochemical screening and antimicrobial activity of crude extracts of Basella albaand Helianthus annuuson selected food pathogens. Journal of Microbiology and Biotechnology, 3(2): 27–31

Junior, M. A. Melo, Santos, L. S. S., Gonçalves, M. C., & Nogueira, A. F. Preparação de nanopartículas de prata e ouro: um método simples para a introdução na nanociência em laboratório de ensino. Quim. Nova, 35, 1872-1878Khan, I., Saeed, K., Khan, I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry

Kim, T. H., et al. Size‐dependent cellular toxicity of silver nanoparticles. Journal of biomedical materials research Part A, 100, 1033-1043.

Khodashenas, B., & Ghorbani, H. R. Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry, p. 1-16

Lemire, J. A., Harrison, J. J., & Turner, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11, 371-384

Liu, Z. et al. Catalytic and antibacterial activities of green-synthesized silver nanoparticles on electrospun polystyrene nanofiber membranes using tea polyphenols. Composites Part B: Engineering, 79, 217-223

Lucky, S. S., Soo, K. C., & Zhang, Y. Nanoparticles in photodynamic therapy. Chemical reviews, 115, 1990-2042

Mishra, A. et al. Reusable Green Synthesized Biomimetic Magnetic Nanoparticles for Glucose and H2O2 Detection. BioNanoScience, 6, 93-102

Mello, S. O. N. et al. In vitro mutagenicity assay (Ames test) and phytochemical characterization of seeds oil of Helianthus/ annuus Linn (sunflower). Toxicology Reports, 3: 733–739, 2016. [CrossRef]

Nath, D., & Banerjee, P. Green nanotechnology - a new hope for medical biology. Environmental Toxicology and Pharmacology, 36, 997-1014

Park, Keunju, Seo, Dongseok, Lee, Jongkook. Conductivity of silver paste prepared from nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, 351-354,

Pinto, C. P., et al. et al. Antimicrobial activity of Lippia species from the Brazilian semiarid region tradionally used as antiseptic and anti-infective agents. Evidence-Based Complementary and Alternative Medicine, 2013, 1-5

Prabhu, S., & Poulose, E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters, 2, 1-10

Qasim, M. et al. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles. International journal of nanomedicine 13, 235, 2018.

Qiao, Z. et al. Extraction, Radical Scavenging Activities, and Chemical Composition Identification of Flavonoids from Sunflower (Helianthus annuus L.) Receptacles. Molecules, 26, 403

Ravindra, S. et al. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367, 31-40

Ratner, B., et al. Biomaterials Science: An Introduction to Materials in Medicine. (3a ed.), Academic Press.

Souza, T. A. J., Souza, L. R. R., & Franchi, L. P., “Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity”, Ecotoxicology and Environmental Safety, 171, 691-700

Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16, 1-24

Subashini, R., & Rakshitha, S. U. Phytochemical screening, antimicrobial activity and in vitro antioxidant investigation of methanolic extract of seeds from Helianthus annuus L. Chemical science review and letters, 1, 30-34

Swietnicki, W. Recent advances in antibacterial drug development. International Journal of Recent Scientific Research, 9, 26501-26505

Taglietti, A. et al. Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir, 28, 8140-8148

Tang, D. et al. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal, 8, 1-9

Tang, S., & Zheng, J. Antibacterial activity of silver nanoparticles: structural effects. Advanced healthcare materials, 7, 1701503

Thierry, B. Drug nanocarriers and functional nanoparticles: applications in cancer therapy. Current drug delivery. 6, 391-403

Publicado

27/06/2021

Cómo citar

LEMOS, T. A. B. .; VIANA , . D. dos S. F. .; VIANA, V. G. F. .; LEMOS, M. H. da S.; FIGUEIRÊDO, G. S. de .; PORTELA, R. da S. .; CARVALHO, A. F. M. de . El uso de síntesis verde para obtener nanopartículas de plata a partir de extractos de girasol (Helianthus annuus). Research, Society and Development, [S. l.], v. 10, n. 7, p. e41810716795, 2021. DOI: 10.33448/rsd-v10i7.16795. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16795. Acesso em: 22 nov. 2024.

Número

Sección

Ciencias de la salud