Alteración del estado redox en la saliva de niños con microcefalia
DOI:
https://doi.org/10.33448/rsd-v10i7.16796Palabras clave:
Microcefalia; Saliva; Estrés oxidativo; Daño oxidativo; Disfagia.Resumen
La microcefalia es una reducción de la circunferencia de la cabeza, debido a la fusión prematura de los huesos del cráneo, impidiendo que el cerebro crezca con normalidad y alcance su máximo desarrollo. Puede resultar en trastornos neurológicos, disfunción de la fonación y masticación, disfagia y riesgo de desnutrición. Contribuye al deterioro de la higiene bucal y al uso continuo de la medicación antipsicótica y anticonvulsiva. Este estudio evaluado si la microcefalia modifica el equilibrio redox en la saliva. Nuestra hipótesis es que en el paciente microcefálico el estrés oxidativo salival es menor por el aumento de las defensas antioxidantes. El estudio incluyó a 13 pacientes con microcefalia (MC) y 12 pacientes sin alteraciones neurológicas (NC), de cero a diez años, no desdentados. La saliva se recogió con un hisopo de algodón en el suelo de la boca. Después de la centrifugación, los sobrenadantes se almacenaron a -80°C. El oxidativo lipídico se evaluó mediante métodos TBARS, la capacidad antioxidante total mediante el ensayo de capacidad reductora férrica (FRAP), el ácido úrico (UA) cuantificó mediante la reacción de Trinder modificada y la actividad superóxido dismutasa (SOD) mediante la inhibición de la autooxidación del pirogalol. La proteína total se midió utilizando el método de Lowry. En comparación con el grupo NC, TBARS fue significativamente menor en el grupo MC, mientras que FRAP, UA y SOD fueron mayores. Nuestra hipótesis fue confirmada. Los pacientes con MC tienen menor estrés oxidativo salival, debido al aumento de las defensas antioxidantes.
Citas
Araujo, H. C., Nakamune, A. C. M. S., Garcia, W. G., Pessan, J. P. & Antoniali, C. (2020). Carious Lesion Severity Induces Higher Antioxidant System Activity and Consequently Reduces Oxidative Damage in Children’s Saliva. Oxidative Medicine and Cellular Longevity, 2020.
Ashwal, S., Michelson, D., Plawner, L. & Dobyns, W. B. (2009). Practice parameter: Evaluation of the child with microcephaly (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology, 73(11).
Benzie, I. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem, 239(1), 70-76.
Bird, R. P. & Draper, H. H. (1984). Comparative studies on different methods of malonaldehyde determination. Methods in enzymology, 105.
Bose, R., Sutherland, G. R. & Pinsky, C. (1989). Biological and methodological implications of prostaglandin involvement in mouse brain lipid peroxidation measurements. Neurochemical research, 14(3).
Camoin, A., Dany, L., Tardieu, C., Ruquet, M. & Le Coz, P. (2018). Ethical issues and dentists' practices with children with intellectual disability: A qualitative inquiry into a local French health network. Disability and health journal, 11(3).
Choromańska, M., Klimiuk, A., Kostecka-Sochoń, P., Wilczyńska, K., Kwiatkowski, M., Okuniewska, N., et al. (2017). Antioxidant Defence, Oxidative Stress and Oxidative Damage in Saliva, Plasma and Erythrocytes of Dementia Patients. Can Salivary AGE be a Marker of Dementia? International journal of molecular sciences, 18(10).
Crews, H., Alink, G., Andersen, R., Braesco, V., Holst, B., Maiani, G., et al. (2001). A critical assessment of some biomarker approaches linked with dietary intake. The British journal of nutrition, 86 Suppl 1.
Cunha-Correia, A. S., Neto, A. H., Pereira, A. F., Aguiar, S. M. & Nakamune, A. C. (2014). Enteral nutrition feeding alters antioxidant activity in unstimulated whole saliva composition of patients with neurological disorders. Research in developmental disabilities, 35(6).
Davila, J. M. (1990). Restraint and sedation of the dental patient with developmental disabilities. Special care in dentistry: official publication of the American Association of Hospital Dentists, the Academy of Dentistry for the Handicapped, and the American Society for Geriatric Dentistry, 10(6).
de Sousa, M. C., Vieira, R. B., Dos Santos, D. S., Carvalho, C. A., Camargo, S. E., Mancini, M. N., et al. (2015). Antioxidants and biomarkers of oxidative damage in the saliva of patients with Down's syndrome. Archives of oral biology, 60(4).
Diab-Ladki, R., Pellat, B. & Chahine, R. (2003). Decrease in the total antioxidant activity of saliva in patients with periodontal diseases. Clinical oral investigations, 7(2).
dos Santos, M. J., Bernabé, D. G., Nakamune, A. C., Perri, S. H., de Aguiar, S. M. & de Oliveira, S. H. (2012). Salivary alpha amylase and cortisol levels in children with global developmental delay and their relation with the expectation of dental care and behavior during the intervention. Research in developmental disabilities, 33(2).
Dougall, A. & Fiske, J. (2008). Access to special care dentistry, part 4. Education. British dental journal, 205(3).
Dumars, K. W., Williams, J. J. & Steele-Sandlin, C. (1980). Achalasia and microcephaly. American journal of medical genetics, 6(4).
Ferreira, L. L., Aguilar Ticona, J. P., Silveira-Mattos, P. S., Arriaga, M. B., Moscato, T. B., Conceição, G. C., et al. (2021). Clinical and Biochemical Features of Hypopituitarism Among Brazilian Children With Zika Virus-Induced Microcephaly. JAMA network open, 4(5).
Ginsburg, I., Kohen, R., Shalish, M., Varon, D., Shai, E. & Koren, E. (2013). The oxidant-scavenging abilities in the oral cavity may be regulated by a collaboration among antioxidants in saliva, microorganisms, blood cells and polyphenols: a chemiluminescence-based study. PloS one, 8(5).
Giuca, M. R., Giuggioli, E., Metelli, M. R., Pasini, M., Iezzi, G., D'Ercole, S., et al. (2010). Effects of cigarette smoke on salivary superoxide dismutase and glutathione peroxidase activity. Journal of biological regulators and homeostatic agents, 24(3).
Humphrey, S. P. & Williamson, R. T. (2001). A review of saliva: normal composition, flow, and function. The Journal of prosthetic dentistry, 85(2).
Kamodyová, N., Tóthová, L., & Celec, P. (2013). Salivary markers of oxidative stress and antioxidant status: influence of external factors. Disease markers, 34(5).
Kriisa, K., Haring, L., Vasar, E., Koido, K., Janno, S., Vasar, V., et al. (2016). Antipsychotic Treatment Reduces Indices of Oxidative Stress in First-Episode Psychosis Patients. Oxidative medicine and cellular longevity, 2016.
Leite, M. F., Ferreira, N. F., Shitsuka, C. D., Lima, A. M., Masuyama, M. M., Sant'Anna, G. R., et al. (2012). Effect of topical application of fluoride gel NaF 2% on enzymatic and non-enzymatic antioxidant parameters of saliva. Archives of oral biology, 57(6).
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of biological chemistry, 193(1).
Marklund, S. & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European journal of biochemistry, 47(3).
Marques, R. S., Vasconcelos, E. C., Andrade, R. M. & Hora, I. A. d. A. (2018). Facial clinical findings in babies with microcephaly. Odonto, 25(49).
Mascitti, M., Coccia, E., Vignini, A., Aquilanti, L., Santarelli, A., Salvolini, E., et al. (2019). Anorexia, Oral Health and Antioxidant Salivary System: A Clinical Study on Adult Female Subjects. Dentistry journal, 7(2).
Moore, S., Calder, K. A., Miller, N. J. & Rice-Evans, C. A. (1994). Antioxidant activity of saliva and periodontal disease. Free radical research, 21(6).
Organization, W. H. (1997). Classification of Diseases for Neurology. World Health Organization 2nd ed, 1.
Organization, W. H. (2018). Microcephaly. https://www.who.int/news-room/fact-sheets/detail/microcephaly.
Pannunzio, E., Amancio, O. M., Vitalle, M. S., Souza, D. N., Mendes, F. M. & Nicolau, J. (2010). Analysis of the stimulated whole saliva in overweight and obese school children. Revista da Associacao Medica Brasileira (1992), 56(1).
Rump, P., Jazayeri, O., van Dijk-Bos, K. K., Johansson, L. F., van Essen, A. J., Verheij, J. B., et al. (2016). Whole-exome sequencing is a powerful approach for establishing the etiological diagnosis in patients with intellectual disability and microcephaly. BMC medical genomics, 9.
Santos, M. T., Batista, R., Guaré, R. O., Leite, M. F., Ferreira, M. C., Durão, M. S., et al. (2011). Salivary osmolality and hydration status in children with cerebral palsy. Journal of oral pathology & medicine: official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 40(7).
Serel Arslan, S., Demir, N., İnal, Ö. & Karaduman, A. A. (2018). The severity of chewing disorders is related to gross motor function and trunk control in children with cerebral palsy. Somatosensory & motor research, 35(3-4).
Simione, M., Wilson, E. M., Yunusova, Y. & Green, J. R. (2016). Validation of Clinical Observations of Mastication in Persons with ALS. Dysphagia, 31(3).
Streicher, M., Wirth, R., Schindler, K., Sieber, C. C., Hiesmayr, M. & Volkert, D. (2018). Dysphagia in Nursing Homes-Results From the NutritionDay Project. Journal of the American Medical Directors Association, 19(2).
Varsha, S., Farah, D. & Suchetha, K. (2015). Estimation of salivary nitric oxide and uric acid levels in oral squamous cell carcinoma and healthy controls. Clinical Cancer Investigation Journal, 4(4), 516-516.
Vernerová, A., Kujovská Krčmová, L., Melichar, B. & Švec, F. (2020). Non-invasive determination of uric acid in human saliva in the diagnosis of serious disorders. Clinical chemistry and laboratory medicine, 59(5).
Warnecke, T., Dziewas, R., Wirth, R., Bauer, J. M. & Prell, T. (2019). Dysphagia from a neurogeriatric point of view: Pathogenesis, diagnosis and management. Zeitschrift fur Gerontologie und Geriatrie, 52(4).
Whiteman, M., Ketsawatsakul, U. & Halliwell, B. (2002). A reassessment of the peroxynitrite scavenging activity of uric acid. Annals of the New York Academy of Sciences, 962.
Wu, H., Ding, J., Wang, L., Lin, J., Li, S., Xiang, G., et al. (2018). Valproic acid enhances the viability of random pattern skin flaps: involvement of enhancing angiogenesis and inhibiting oxidative stress and apoptosis. Drug design, development and therapy, 12.
Xing, Z., Zhang, C., Zhao, C., Ahmad, Z., Li, J. S. & Chang, M. W. (2018). Targeting oxidative stress using tri-needle electrospray engineered Ganoderma lucidum polysaccharide-loaded porous yolk-shell particles. European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences, 125.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Thayane Miranda Alves; Cintia Megid Barbieri; Marco Aurelio Gomes; Heitor Ceolin Araujo; Nathália de Oliveira Visquette; Liliane Passanezi de Almeida Louzada; Cristina Antoniali Silva; Antonio Hernandes Chaves-Neto; Ana Claudia de Melo Stevanato Nakamune
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.