Té Pu-erh: Proceso fermentativo como potencialización de aspectos sensoriales y perfil bioactivo - una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i8.16999

Palabras clave:

Perfil bioactivo; Camellia sinensis; Proceso fermentativo; Salud; Aspectos sensoriales.

Resumen

Pu-erh es un té chino fermentado con características de sabor suave a madera y color rojo oscuro. La preparación del té parte de hojas de Camellia sinensis in natura que se someten a un secado al sol. Su clasificación se da en dos categorías: un té crudo similar al té verde y un té maduro que se fermenta. El té madurado tiene un mayor valor de mercado debido a los procesos involucrados en la fabricación, especialmente en términos de envejecimiento. Pu-erh tiene numerosos beneficios para la salud humana, los cuales están estrechamente relacionados con el perfil bioactivo de los principales componentes químicos del té, siendo los polifenoles, theabrowninas, flavonoles, polisacáridos, aminoácidos y alcaloides. La creciente introducción del té Pu-erh en la dieta de los consumidores da como resultado la necesidad de explorar la información asociada con el consumo a través del análisis de la literatura disponible, abordando la evidencia científica actual. Por lo tanto, la presente revisión buscó dilucidar el proceso fermentativo de la producción de té Pu-erh, su composición química, sus aspectos sensoriales y beneficios para la salud.

Citas

Apeh, D. O., Mark, O., Onoja, V. O., Awotunde, M., Ojo, T., Christopher, P. & Makun, H. A. (2021). Hydrogen cyanide and mycotoxins: Their incidence and dietary exposure from cassava products in Anyigba, Nigeria. Food Control, 121. 107663. 10.1016/j.foodcont.2020.107663

Armstrong, L., do Carmo, M. A. V., Wu, Y., Esmerino, L. A., Azevedo, L., Zhang, L. & Granato, D.. (2020). Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of α-amylase and α-glucosidase activities. Food Res. Int., 137, 109430. 10.1016/j.foodres.2020.109430

Bogdanova, E., Pugajeva, I., Reinholds I. & Bartkevics, V. (2020). Two-dimensional liquid chromatography - high resolution mass spectrometry method for simultaneous monitoring of 70 regulated and emerging mycotoxins in Pu-erh tea. J. Chromatogr. A., 1622, 461145. 10.1016/j.chroma.2020.461145

Borràs, E., Ferré, J., Boqué, R., Mestres, M., Aceña, L. & Busto, O. (2015). Data fusion methodologies for food and beverage authentication and quality assessment – A review. Anal. Chim. Acta., 891, 1-14. 10.1016/j.aca.2015.04.042

Cao, S. Y., Li, B. Y., Gan, R.Y., Mao, Q. Q., Wang, Y. F., Shang, A., Meng, J. M., Xu, X. Y., Wei, X. L. & Li, H. B. (2020). The In Vivo Antioxidant and Hepatoprotective Actions of Selected Chinese Teas. Foods, 9, 262. 10.3390/foods9030262

Cao, X., Liu, M., Hu, Y., Xue, Q., Yao, F., Sun, J., Sun L. & Liu. Y. (2021). Systemic characteristics of biomarkers and differential metabolites of raw and ripened pu-erh teas by chemical methods combined with a UPLC-QQQ-MS-based metabolomic approach. LWT – Food Sci. Technol., 136, 110316. 10.1016/j.lwt.2020.110316

Choi, S. H., Kim, I. D., Dhungana S. K. & Kim, D. G. (2018). Comparison of Quality Characteristic and Antioxidant Potential of Cultivated Pu-erh and Gushu Pu-erh Tea Extracts at Two Temperatures. J. Pure Appl. Microbiol., 12, 1155-1161. 10.22207/JPAM.12.3.14

Degirmencioglu, N., Yildiz, E., Sahan, Y., Güldas, M. & Gürbüz, O. (2020). Impact of tea leaves types on antioxidant properties and bioaccessibility of kombucha. J. Food Sci. Technol., 10.1007/s13197-020-04741-7

Di Rosa, A. R., Leone, F., Cheli, F. & Chiofalo, V. (2017). Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment – A review. J. Food Eng., 210, 62-75. 10.1016/j.jfoodeng.2017.04.024

Fan, J. P., Fan, C., Dong, W. M., Gao, B.,Yuan, W. & Gong, J. S. (2013). Free radical scavenging and anti-oxidative activities of an ethanol-soluble pigment extract prepared from fermented Zijuan Pu-erh tea. Food Chem. Toxicol., 59, 527-533. 10.1016/j.fct.2013.06.047

Feng, Z,. Li, Y., Wang, Y., Zhang, L., Wan, X. & Yang, X. (2019). Tea aroma formation from six model manufacturing processes. Food Chem., 285, 347-354. 10.1016/j.foodchem.2019.01.174

Ferreira, C. D., Lang, G. H., Lindemann, I. S., Timm, N. S., Hoffmann, J. F., Ziegler, V. & de Oliveira, M. (2021). Postharvest UV-C irradiation for fungal control and reduction of mycotoxins in brown, black, and red rice during long-term storage. Food Chem., 339, 127810. 10.1016/j.foodchem.2020.127810

Gao, L., Bian, M., Mi, R., Hu, X. & Wu, J. (2016). Quality identification and evaluation of Pu‐erh teas of different grade levels and various ages through sensory evaluation and instrumental analysis. Int. J. Food Sci. Technol., 51, 1338-1348. 10.1111/ijfs.13103

Georgiev, K. D., Ilieva, M. R., Stoeva, S. & Zhelev, I. (2019). Isolation, analysis and in vitro assessment of CYP3A4 inhibition by methylxanthines extracted from Pu-erh and Bancha tea leaves. Sci. Rep., 9, 13941. 10.1038/s41598-019-50468-7

Georgiev, K., Iliev, I. & Jelev, I. (2015). Evaluation of antitumor effect of methylxanthine fraction isolated from Pu-erh tea. World J. Pharm. Res., 4, 2236-2242.

Ge, Y., Bian, X., Sun, B., Zhao, M., Ma, Y.,Tang, Y., Li, N. & Wu, J. L. (2019). Dynamic Profiling of Phenolic Acids during Pu-erh Tea Fermentation Using Derivatization Liquid Chromatography–Mass Spectrometry Approach. J. Agric. Food Chem., 67, 4568–4577. 10.1021/acs.jafc.9b00789

Gong, J. S., Tang, C. & Peng, C. X. (2012). Characterization of the chemical differences between solvent extracts from Pu-erh tea and Dian Hong black tea by CP–Py–GC/MS. J. Anal. Appl. Pyrolysis., 95, 189-197. 10.1016/j.jaap.2012.02.006

Haas, D., Pfeifer, B., Reiterich, C., Partenheimer, R., Reck, B. & Buzina, W. (2013). Identification and quantification of fungi and mycotoxins from Pu-erh tea. Int. J. Food Microbiol., 166, 316-322. 10.1016/j.ijfoodmicro.2013.07.024

Huang, F., Zheng, X., Ma, X., Jiang, R., Zhou, W., Zhou, S., Zhang, Y., Lei, S., Wang, S., Kuang, J., Han, X., Wei, M., You, Y., Li, M., Li, Y., Liang, D., Liu, J., Chen, T.,Yan, C., Wei, R., Rajani, C., Shen, C., Xie, G., Bian, Z., Li, H., Zhao A. & Jia, W. (2019a). Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun., 10, 4971. 10.1038/s41467-019-12896-x

Huang, Y., Wang T., Fillet, M., Crommen, J. & Jiang, Z. (2019b). Simultaneous determination of amino acids in different teas using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J. Pharm. Anal., 9, 254-258. 10.1016/j.jpha.2019.05.001

Jankech, T., Maliarová, M. & Martinka, N. (2019). Determination of methylxanthines in tea samples by HPLC method. Nova Biotechnol. Chim., 18, 124-132. 10.2478/nbec-2019-0015

Lee, L. K. & Foo, K. Y. (2013). Recent advances on the beneficial use and health implications of Pu-Erh tea. Food Res. Int., 53, 619-628. 10.1016/j.foodres.2013.02.036

Liu, Z., Xie, H. I., Chen, L. & Huang, J. H. (2018). An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea. Molecules, 23, 1058. 10.3390/molecules23051058

Li, Z., Feng, C., Luo, X., Yao, H., Zhang, D. & Zhand, T. (2018). Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis. Food Microbiol., 76, 405-415. 10.1016/j.fm.2018.07.001

Long, P., Wen, M., Granato, D., Zhou, J., Wu, Y., Hou, Y. & Zhang, L. (2020). Untargeted and targeted metabolomics reveal the chemical characteristic of pu-erh tea (Camellia assamica) during pile-fermentation. Food Chem., 311, 125895. 10.1016/j.foodchem.2019.125895

Lv, H. P., Zhang, Y. J., Lin, Z. & Liang, Y. R. (2013a). Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int., 53, 608-618. 10.1016/j.foodres.2013.02.043

Lv, H. P., Lin, Z., Tan, J. F. & Guo, L. (2013b). Contents of fluoride, lead, copper, chromium, arsenic and cadmium in Chinese Pu-erh tea. Food Res. Int., 53, 938-944. 10.1016/j.foodres.2012.06.014

Marin, S., Ramos, A. J., Cano-sancho, G. & Sanchis, V. (2013). Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem Toxicol., 60, 218-237. 10.1016/j.fct.2013.07.047

Ma, Y., Ling, T. J., Su, X. Q., Jiang, B.. Nian, B., Chen, L. J., Liu, M. I., Zhang, Z. Y., Wang, D. P., Mu, Y. Y., Jiao, W. W., Liu, Q. T., Pan, Y. H. & Zhao, M. (2021). Integrated proteomics and metabolomics analysis of tea leaves fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus. Food Chem., 334, 127560. 10.1016/j.foodchem.2020.127560

Pakshir, K., Mirshekari, Z., Nouraei, H., Zareshahrabadi, Z., Zomorodian, K., Khodadadi, H. & Hadaegh, A. (2020). Mycotoxins Detection and Fungal Contamination in Black and Green Tea by HPLC-Based Method. J. Toxicol., 7 p. 10.1155/2020/2456210

Pang, X., Yu, W., Cao, C., Yuan X., Qiu, J., Kong, F. & Wu, J. (2019). Comparison of Potent Odorants in Raw and Ripened Pu-Erh Tea Infusions Based on Odor Activity Value Calculation and Multivariate Analysis: Understanding the Role of Pile Fermentation. J. Agric. Food Chem., 67, 13139–13149. 10.1021/acs.jafc.9b05321

Roda, G., Marinello, C., Grassi, A., Picozzi, C., Aldini, G., Carini, M. & Regazzoni, L. (2019). Ripe and Raw Pu-Erh Tea: LC-MS Profiling, Antioxidant Capacity and Enzyme Inhibition Activities of Aqueous and Hydro-Alcoholic Extracts. Molecules, 24, 473. 10.3390/molecules24030473

Sedova, I., Kiseleva, M. & Tutelyan, V. (2018). Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. Toxins, 10, 444. 10.3390/toxins10110444

Shao, L., Wang, G., Guo, M.,Yang, L., Jiang, D., Li, R. & Zhu, J. (2020). Determination of 9,10-anthraquinone in tea consumed in Shandong Province of China. Chem. Pap., 74, 4453-4460. 10.1007/s11696-020-01254-7

Vuong, Q. V., Golding, J. B., Nguyen, M. & Roach, P. D.(2010). Extraction and isolation of catechins from tea. J. Sep. Sci., 33, 3415-3428.

Wang, C., He, Z., Zhang, C., Du, L., Xiao, D. & Xu, Y. (2020). Sensory and instrumental analysis-guided exploration of odor-active compounds recovery with oil during the water-boiling extraction of Pu-erh tea. Food Res. Int., 134, 109243. 10.1016/j.foodres.2020.109243

Wu, E., Zhang, T., Tan, C., Peng, C., Chisti, Y., Wang, Q. & Gong, J. (2020). Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats. Eur. J. Nutr., 59, 1937-1950. 10.1007/s00394-019-02044-y

Wu, S. C., Yen, G. C., Wang, B. S., Chiu, C. K., Yen, W. J., Chang, L. W. & Duh, P. D. (2007). Antimutagenic and antimicrobial activities of pu-erh tea. LWT – Food Sci. Technol., 40, 506-512 10.1016/j.lwt.2005.11.008.

Xia, Y., Tan, D., Akbary, R., Kong, J., Seviour, R. & Kong, Y. (2019). Aqueous raw and ripe Pu-erh tea extracts alleviate obesity and alter cecal microbiota composition and function in diet-induced obese rats. Appl. Microbiol. Biotechnol., 103, 1823-1835. 10.1007/s00253-018-09581-2

Xie, G., Ye, M., Wang, Y., Ni, Y., Su, M., Huang, H., Qiu, M., Zhao, A., Zheng, X., Chen, T. & Jia, W. (2009). Characterization of Pu-erh Tea Using Chemical and Metabolic Profiling Approaches. J. Agric. Food Chem., 57, 3046-3054. 10.1021/jf804000y

Xue, J., Yang, L., Yang, Y., Yan, J., Ye, Y., Hu, C. & Meng, Y. (2020). Contrasting microbiomes of raw and ripened Pu-erh tea associated with distinct chemical profiles. LWT – Food Sci. Technol., 124, 109147. 10.1016/j.lwt.2020.109147

Xu, J., Wang, M., Zhao, J., Wang,Y. H., Tang, Q. & Khan, I. A. (2018). Yellow tea (Camellia sinensis L.), a promising Chinese tea: Processing, chemical constituents and health benefits. Food Res. Int., 107, 567-577. 10.1016/j.foodres.2018.01.063

Xu, S., Wang, J. J., Wei, Y., Deng, W. W., Wan,X., Bao, G. H., Xie, Z., Ling, T. J. & Ning, J. (2019). Metabolomics Based on UHPLC-Orbitrap-MS and Global Natural Product Social Molecular Networking Reveals Effects of Time Scale and Environment of Storage on the Metabolites and Taste Quality of Raw Pu-erh Tea. J. Agric. Food Chem., 67, 12084–12093. 10.1021/acs.jafc.9b05314

Yang, C.S., Wang, H., Li, G. X.,. Yang, Z., Guan, F. & Jin, H. (2011). Cancer prevention by tea: Evidence from laboratory studies. Pharmacol. Res., 64, 113-122. 10.1016/j.phrs.2011.03.001

Yang, Z., Miao, N., Zhang, X., Li, Q., Wang, Z., Li, C., Sun. X. & Lan, Y. (2021). Employment of an electronic tongue combined with deep learning and transfer learning for discriminating

the storage time of Pu-erh tea. Food Control, 121, 107608. 10.1016/j.foodcont.2020.107608

Yi, T., Zhu, L., Peng, W. L., He, X. C., Chen, H. L., Li, J.,. Yu, T., Lian, Z. T., Zhao, Z. Z. & Chen, H. B. (2015). Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis. LWT - Food Sci. Technol., 62, 194-201. 10.1016/j.lwt.2015.01.003

Zhang, T., Ni, H., Qiu, X. J., Li, T., Zhang, L. Z., Li, L. J., Jiang, Z. D., Li, Q. B., Chen. F. & Zheng, F. P. (2019). Suppressive Interaction Approach for Masking Stale Note of Instant Ripened Pu-Erh Tea Products. Molecules, 24, 4473. 10.3390/molecules24244473

Zhao, M., Su, X. Q., Nian, B., Chen, L. J., Zhang, D. L., Duan, S. M., Wang, L. Y., Shi, X. Y., Jiang, B., Jiang, W. W., Lv, C. Y.,Wang, D. P., Shi, Y., Xiao, Y., Wu, J. L., Pa, Y. H.; & Ma, Y. (2019). Integrated Meta-omics Approaches To Understand the Microbiome of Spontaneous Fermentation of Traditional Chinese Pu-erh Tea. Am. Soc. Microbiol., 4, e00680-19. 10.1128/mSystems.00680-19

Zhao, Z.J., Tong, H. R., Zhou, Wang E. X. & Liu, Q. J. (2010). Fungal colonization of Pu-erh tea in Yunnan. J. Food Saf., 30, 769-784. 10.1111/j.1745-4565.2010.00240.x

Zheng, Y., Zeng, X., Chen, T., Peng, W. & Su, W.. (2020). Chemical Profile, Antioxidative, and Gut Microbiota Modulatory Properties of Ganpu Tea: A Derivative of Pu-erh Tea. Nutrients, 12, 224. 10.3390/nu12010224

Zhou, B., Ma, C., Ren, X., Xia, T., Li, X. & Wu, Y. (2019). Production of theophylline via aerobic fermentation of pu-erh tea using tea-derived fungi. BMC Microbiol, 19, 261. 10.1186/s12866-019-1640-2

Zhou, B., Ma, C., Wu, T., Xu, C., Wang, J. & Xia, T. (2020a). Classification of raw Pu-erh teas with different storage time based on characteristic compounds and effect of storage environment. LWT – Food Sci. Technol., 133, 109914. 10.1016/j.lwt.2020.109914

Zhou, B., Ma, C., Ren, X., Xia, T., Zheng, C. & Liu, X. (2020b). Correlation analysis between filamentous fungi and chemical compositions in a pu‐erh type tea after a long‐term storage. Food Sci. Nutr., 8, 2501-2511. 10.1002/fsn3.1543

Descargas

Publicado

04/07/2021

Cómo citar

DEVOS, R. J. B. .; BARTH, C. de A.; DETTMER, A.; BERTOLIN, T. E.; COLLA, L. M. . Té Pu-erh: Proceso fermentativo como potencialización de aspectos sensoriales y perfil bioactivo - una revisión. Research, Society and Development, [S. l.], v. 10, n. 8, p. e3510816999, 2021. DOI: 10.33448/rsd-v10i8.16999. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16999. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas