Geotecnología y cambios climáticos en la vegetación de altitud

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i8.17657

Palabras clave:

Vegetación de pradera; Publicaciones cientificas; Cambios climáticos; Variaciones espacio-temporales; Altitud; Distribución de la vegetación; Geotecnologías

Resumen

El análisis bibliométrico se considera un estudio rápido y eficiente para evaluar las tendencias de investigación y las redes académicas en diferentes disciplinas de investigación. El objetivo de este estudio fue realizar una análisis bibliométrica y presentar una visión general de las tendencias de investigación sobre la variabilidad espacial y temporal de la vegetación de altitud en respuesta al cambio climático con la ayuda de geotecnologías. Para ello, se realizó una búsqueda bibliográfica utilizando la base de datos de Web of Science el 11 de diciembre de 2020, para recopilar publicaciones académicas sobre cambios espacio-temporales en la vegetación de altitud en respuesta al cambio climático, entre los años de 1945 y 2020. Obtuvieron un total de 54 publicaciones con resúmenes alineados. Se leyeron todos estos documentos y se alcanzó el número de 27 publicaciones que cumplieron con todos los criterios relacionados con el objetivo de este análisis. El análisis mostró que el número de publicaciones relacionadas con el tema de esta investigación es aún muy pequeño y restringido a unos pocos países y tipos de vegetación específicos en ciertas áreas alpinas.

Biografía del autor/a

Dhonatan Diego Pessi, Universidade Federal de Mato Grosso do Sul

Doutorando em Tecnologias Ambientais pela Universidade Federal de Mato Grosso do Sul.

Marco Antonio Diodato, Universidade Federal Rural do Semi Árido

Doutor em Ciências Biológicas pela Universidade Federal do Paraná. Atualmente é professor associado da Universidade Federal Rural do Semi-Árido-UFERSA.

Normandes Matos da Silva, Universidade Federal de Rondonópolis

Doutor em Ecologia de Ecossistemas Terrestres e Aquáticos pela Universidade de São Paulo. Atualmente Professor Associado na Universidade Federal de Rondonópolis (UFR), no curso de graduação em Engenharia Agrícola e Ambiental.

Alfredo Marcelo Grigio, Universidade do Estado do Rio Grande do Norte

Doutor em Geodinâmica pela Universidade Federal do Rio Grande do Norte. Atualmente é professor Adjunto II da Universidade do Estado do Rio Grande do Norte.

Camila Leonardo Mioto, Universidade Federal de Rondonópolis

Doutora em Saneamento Ambiental e Recursos Hídricos pelo Programa Tecnologias Ambientais pela Universidade Federal de Mato Grosso do Sul. É Professora do curso de Engenharia Agrícola e Ambiental e do Programa de Pós-Graduação em Gestão e Tecnologia Ambiental (PGGTA) da Universidade Federal de Rondonópolis.

Vinícius de Oliveira Ribeiro, Universidade Estadual de Mato Grosso do Sul

Doutor em Saneamento Ambiental e Recursos Hídricos - PGTA/UFMS. É Professor Adjunto da Universidade Estadual de Mato Grosso do Sul - UEMS.

Antonio Conceição Paranhos Filho, Universidade Federal de Mato Grosso do Sul

Livre-Docente pelo Instituto de Geociências da USP. É Professor Titular da UFMS.

Citas

Bluden, J. & Arndt, D. S. (2018). State of the Climate in 2017. Bull. Am. Meteorol. Soc., 99, p. 332.

Bai, Y. et al. (2020). Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Science of the Total Environment, 742, p. 140574.

Baier-Fuentes, H. et al. (2019). International entrepreneurship: A bibliometric overview. Int. Entrep. Manag. J., 15, p. 385-429.

Boelman, N. T. et al. (2003). Response of NDVI biomass and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia, 135, p. 414-421.

Bergier, I. (2013). Effects of highland land-use over lowlandsof the Brazilian Pantanal. Sci Total Environ, 463-464, p. 1060−1066.

Bravo, J. M. et al. (2014). Impact of projected climate change on hydrologicregime of the Upper Paraguay River basin. Clim Change, 127, p. 27-41.

CANVA. (2020). Disponível em: https://www.canva.com/pt_br/. Acessado em: 16 de setembro de 2020.

Chaves, J. R. (2020). Sintaxe Espacial e Mobilidade na Paisagem Urbana como ferramenta para gestão. Dissertação de Mestrado. Fundação Universidade de Mato Grosso do Sul, Campo Grande. 2020. 125p.

Chiu, W. T & Ho, Y. S. (2005). Bibliometric analysis of homeopathy research during the period of 1991 to 2003. Scientometrics, 63, p. 3–23.

Correa-Díaz, A. et al. (2020). Long-Term Wood Micro-Density Variation in Alpine Forests at Central México and Their Spatial Links with Remotely Sensed Information. Forests, 11, p. 452.

Dong, D. & Chen, M. L. (2015). Publication trends and co-citation mapping of translation studies between 2000 and 2015. Scientometrics, v. 105, p. 1111-1128.

Engels, A. (2018). Understanding how China is championing climate change mitigation. PALGRAVE COMMUNICATIONS, 4 (101), p. 1-6.

Gao, Q. et al. (2009). Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Climate Change, 97, p. 515-528.

Haunschild, R.; Bornmann, L.; Marx, W. (2016). Climate Change Research in View of Bibliometrics. PLoS ONE, 11 (7), p. e0160393.

Huete, A. et al. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, p. 195-213.

Huang, N. et al. (2018). No upward shift of alpine grassland distribution on the Qinghai-Tibetan Plateau despite rapid climate warming from 2000 to 2014. Science of the Total Environment, 625, p. 1361-1368.

Huang, S. (2020). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res., 32, p. 1-6.

Herrera-Franco, G.; et al. (2020). Research Trends in Geotourism: A Bibliometric Analysis Using the Scopus Database. Geosciences, 10 (379), p. 1-29.

He, Z. B. et al. (2015). Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China. Agricultural and Forest Meteorology, 213, p. 42-52.

Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National academy of Sciences, 102 (46), p. 16569-16572.

Ioris, A. A. R.; Irigaray, C. T.; Girard, P. (2014). Institutionalresponses to climate change: opportunities and barriersfor adaptation in the Pantanal and the Upper ParaguayRiver Basin. Clim Change, 127, p. 139-151.

Fang, J. et al. (2001). Inter-annual variability in net primary production and precipitation. Science, 293, p. 1723a.

Junk, W. J. et al. (2006). Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat. Sci., 68, p. 278–309.

Knapp, A. K. & Smith, M. D. (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, p. 481-484.

Li, A. H. F. (2016). Hopes of Limiting Global Warming? China and the Paris Agreement on Climate Change. China Perspectives, 1, p. 49-54.

Li, C. B. et al. (2014). Regional vegetation dynamics and its response to climate change-a case study in the Tao River Basin in Northwestern China. Environmental Research Letters, 9 (12), p. 12.

Pepin, N. et al. (2015). Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang., 5, p. 424–430.

Ma, X. et al. (2019). Sensitivity of Vegetation on Alpine and Subalpine Timberline in Qinling Mountains to Temperature Change. Forests, 10, p. 1105.

Melillo, J. M. et al. (1993). Global climate change and terrestrial net primary production. Nature, 363, p. 234-240.

Nemani, R. R. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, p. 1560-1563.

Tao, J. et al.(2018). Elevation-dependent effects of climate change on vegetation greenness in the high mountains of southwest China during 1982–2013. Int. J. Climatol., 38, p. 2029–2038.

Tan, J. et al. (2014). A bibliometric analysis of research on proteomics in Science Citation Index Expanded. Scientometrics., 98, p. 1473–1490.

Tai, T. C. & James, P. W. R. (2018). Enhancing Climate Change Research With Open Science. Front. Environ. Sci., 6 (115), p. 1-5.

THE ENDNOTE TEAM. (2013). EndNote. Clarivate. Version X9. Available from https://endnote.com/

Van Eck, N. J. & Waltman, L. (2010). VOSViewer: Visualizing Scientific Landscapes [Software]. Available from https://www.vosviewer.com

Wang, X. et al. (2014). Alpine Cold Vegetation Response to Climate Change in the Western Nyainqentanglha Range in 1972–2009. The Scientific World Journal, 2014, p. 1-9.

Wang, L. et al. (2019). Bibliometric Analysis of Remote Sensing Research Trend in Crop Growth Monitoring: A Case Study in China. Remote Sens., 11, p. 809.

Walker, D. A. et al. (2005). The Circumpolar Arctic vegetation map. Journal of Vegetation Science, 5 (16), p. 267-282.

Santin-Janin, H. et al. (2009). Assessing the performance of NDVI as a proxy for plant biomassusing non-linear models: a case study on the Kerguelenarchipelago. Polar Biol., 32, p. 861-871.

Shen, M. G. et al. (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2 (4), p. 454-467.

Sun, J. et al. (2006). Impact of climate change in the Hengduan Mountains of northwestern Yunnan, P. R. China: Vegetation distribution change in foretime and future. Proc. of SPIE, 6296, p.62960X-1.

Pouliot, D. et al. (2009). Trends in vegetation NDVI from 1 km AVHRR data over Canada for the period 1985–2006. International Journal of Remote Sensing, 30 (1), p. 149-168.

Jeong, S. J. et al. (2011). Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 17, p. 2385–2399.

Xi, Z. (2020). China’ s historical evolution of environmental protection along with the forty years’ reform and opening-up. Environmental Science and Ecotechnology, 1, p. 100001.

Zhang, R. et al. (2019a). Grassland vegetation phenological variations and responses to climate change in the Xinjiang region, China. Quaternary International, 513, p. 56–65.

Zhang, L. et al. (2016). A review of ecosystem services: a bibliometric analysis based on web of science. Acta Ecologica Sinica., 36, p. 5967–5977.

Zhang, X. et al. (2019b). Bibliometric analysis of highly cited articles on ecosystem services. PLoS ONE, 14 (2), p. e0210707.

Zhang, J. et al. (2016). Comparing keywords plus of WOS and author key-words: A case study of patient adherence research. J Assoc Inf Sci Technol., 67, p. 967–972.

Zhang, J. et al. (2007). Evaluation of Grassland Dynamics in the Northern-Tibet Plateau of China Using Remote Sensing and Climate Data. Sensors, 7, p. 3312-3328.

Zhou, L. H. et al. (2009). Response of Vegetation Coverage on Climate Change in Arid Mountain of Northwest China. In: Ieee International Geoscience and Remote Sensing Symposium, Vols 1-5. New York, Ieee: 1871.

Publicado

18/07/2021

Cómo citar

PESSI, D. D.; DIODATO, M. A.; SILVA, N. M. da .; GRIGIO, A. M.; MIOTO, C. L.; RIBEIRO, V. de O. .; PARANHOS FILHO, A. C. Geotecnología y cambios climáticos en la vegetación de altitud. Research, Society and Development, [S. l.], v. 10, n. 8, p. e58710817657, 2021. DOI: 10.33448/rsd-v10i8.17657. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17657. Acesso em: 23 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas