Diferentes anclajes óseos para implantes de cono Morse con diferentes longitudes en el maxilar anterior: Un análisis in silico
DOI:
https://doi.org/10.33448/rsd-v10i9.17729Palabras clave:
Implantes dentales; Análisis de elementos finitos; Tejido óseo.Resumen
Este estudio tuvo como objetivo evaluar la distribución de tensiones en tejido óseo, en implantes Morse y componentes que sostienen una corona en la zona anterior maxilar, bajo diferentes anclajes óseos (convencional, bicortical y bicortical con elevación nasal) y longitudes de implante (8,5mm, 10mm y 11,5mm) utilizando análisis de elementos finitos 3D. Se simularon tres modelos 3D, incluido el elemento 11, utilizando el software InVesalius, Rhinoceros 3D y SolidWorks. Se reconstruyeron modelos de bloques óseos a partir de tomografía computarizada y se simuló la colocación de un implante de 4mm de diámetro y longitudes antes mencionadas, soportando la corona de circonio cementado. Los modelos 3D fueron procesados por el software de elementos finitos FEMAP y NeiNastran, utilizando una carga de 178N se aplicaron a 0º, 30º y 60º, considerando el eje largo del implante. Los resultados se visualizaron como el estrés de von Mises, el estrés principal máximo y microdeformación. Los anclajes óseos bicorticales mostraron menor tensión y microesfuerzo del tejido óseo en comparación con el convencional. No se observaron diferencias entre la elevación bicortical y del piso nasal. En cuanto a implantes y componentes, la distribución de tensiones fue similar entre modelos con escaso alivio de tensiones en la región apical de los implantes con anclaje convencional. llegamos a la conclusión de que es que la carga no axial mostró un peor comportamiento biomecánico para el tejido óseo y los implantes/componentes. Se deben preferir las técnicas bicorticales durante la colocación del implante para reducir la tensión y la microesfuerzo.
Citas
Ahn, S. J., Leesungbok, R., Lee, S. W., Heo, Y. K., & Kang, K. L. (2012). Differences in implant stability associated with various methods of preparation of the implant bed: an in vitro study. J Prosthet Dent. 107(6): 366-72.
Castro, D. S., et al. (2014). Comparative histological and histomorphometrical evaluation of marginal bone resorption around external hexagon and Morse cone implants: an experimental study in dogs. Implant Dent. 23(3):270-6.
Cruz, R. S., et al. (2018). Short implants versus longer implants with maxillary sinus lift. A systematic review and meta-analysis. Braz Oral Res.32:e86.
Cruz, R. S., et al. (2020). Clinical comparison between crestal and subcrestal dental implants: A systematic review and meta-analysis. J Prosthet Dent. S0022-3913(20)30691-0.
de Souza Batista, V. E., et al. (2017) Finite element analysis of implant-supported prosthesis with pontic and cantilever in the posterior maxilla. Comput Methods Biomech Biomed Engin. 20(6): 663-670. (2)
de Souza Batista, V. E, et al. (2017). Evaluation of the effect of an offset implant configuration in the posterior maxilla with external hexagon implant platform: A 3-dimensional finite element analysis. J Prosthet Dent. 118(3): 363-371.
Faria PE, et al. (2016). Immediate loading of implants in the edentulous mandible: a multicentre study. Oral Maxillofac Surg. 20(4): 385-390.
Felisati G, et al. (2013). Sinonasal complications resulting from dental treatment: outcome-oriented proposal of classification and surgical protocol. Am J Rhinol Allergy. 27(4): e101-6.
Frost, H. M. (2003). Bone's mechanostat: a 2003 update. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 275: 1081-1101.
Goiato M. C, et al. (2014). Longevity of dental implants in type IV bone: a systematic review. Int J Oral Maxillofac Surg. 43(9):1108-16.
Gonçalves, T. M, et al. (2015). Long-term Short Implants Performance: Systematic Review and Meta-Analysis of the Essential Assessment Parameters. Braz Dent J. 26(4): 325-36.
Guida, L, et al. (2020). 6-mm-short and 11-mm-long implants compared in the full-arch rehabilitation of the edentulous mandible: A 3-year multicenter randomized controlled trial. Clin Oral Implants Res. 31(1):64-73
Han, H. C, et al. (2016). Primary implant stability in a bone model simulating clinical situations for the posterior maxilla: an in vitro study. J Periodontal Implant Sci. 46(4):254-65.
Huang, H.-L., et al. (2009). Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis. The International Journal of Oral&Maxillofacial Implants. 24(3): 455–62.
Ivanoff, C. J., et al. (2000). Influence of bicortical or monocortical anchorage on maxillary implant stability: a 15-year retrospective study of Brånemark System implants. Int J Oral Maxillofac Implants; 15(1): 103–110.
Kan, B, et al. (2015). Effects of inter-implant distance and implant length on the response to frontal traumatic force of two anterior implants in an atrophic mandible: three-dimensional finite element analysis. Int J Oral Maxillofac Surg. 44(7): 908-13.
Kfir, E, et al. (2012). Minimally invasive subnasal elevation and antral membrane balloon elevation along with bone augmentation and implants placement. J Oral Implantol. 38(4): 365-76.
Lazari, P. C., et al. (2014). Influence of the veneer-framework interface on the mechanical behavior of ceramic veneers: a nonlinear finite element analysis. J Prosthet Dent. 112(4):857-63.
Lekholm, U., & Zarb, G. A. (1985). Patient selection and preparation. In: Brånemark, P.I., Zarb, G.A., Albrektsson, T. (Eds.), Tissue-integrated Prostheses. Osseointegration in Clinical Dentistry, Quintessence, Chicago, pp. 199–209.
Lemos, C. A., et al. (2016). Short dental implants versus standard dental implants placed in the posterior jaws: A systematic review and meta-analysis. J Dent. 47:8-17.
Lemos, C. A. A., et al. (2018). Retention System and Splinting on Morse Taper Implants in the Posterior Maxilla by 3D Finite Element Analysis. Braz Dent J. 29(1):30-35.
Limbert, G., et al. (2010). Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study. J Biomech. 43(7):1251-61.
Mangano, F., et al. (2012). Single-tooth Morse taper connection implants placed in fresh extraction sockets of the anterior maxilla: an aesthetic evaluation. Clin Oral Implants Res. 23(11): 1302-7.
Mazor, Z., et al. (2012). Nasal floor elevation combined with dental implant placement. Clin Implant Dent Relat Res. 14(5): 768-71.
Minatel, L., et al. (2017). Effect of different types of prosthetic platforms on stress-distribution in dental implant-supported prostheses. Mater Sci Eng C Mater Biol Appl. 71:35-42.
Pellizzer, E. P., et al. (2018). Biomechanical analysis of different implant-abutments interfaces in different bone types: An in silico analysis. Mater Sci Eng C Mater Biol Appl. 90: 645-650.
Santiago Junior, J F., et al. (2016). Finite element analysis on influence of implant surface treatments, connection and bone types. Mater Sci Eng C Mater Biol Appl. 63: 292-300.
Sertgöz, A. (1997) Finite element analysis study of the effect of superstructure material on stress distribution in an implant-supported fixed prosthesis. Int J Prosthodont. 10(1):19-27.
Sevimay, M., et al. (2005). Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent. Mar;93(3):227-34.
Sotto-Maior, B. S., et al. (2014). Biomechanical evaluation of subcrestal dental implants with different bone anchorages. Braz Oral Res.
Strub, J. R., et al. (2012). Prognosis of immediately loaded implants and their restorations: a systematic literature review. J Oral Rehabil. 39(9):704-17.
Telleman, G., et al. (2011). A systematic review of the prognosis of short (<10 mm) dental implants placed in the partially edentulous patient. J Clin Periodontol. 38(7): 667-76.
Toniollo, M. B., et al. (2017). A Three-Dimensional Finite Element Analysis of the Stress Distribution Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges with Regular or Short Morse Taper Implants. Int J Oral Maxillofac Implants. 32(2): 372-376.
Verri, F. R., et al. (2016). Can the modeling for simplification of a dental implant surface affect the accuracy of 3D finite element analysis? Comput Methods Biomech Biomed Engin. 19(15): 1665-72.
Verri, F. R., et al. (2017). Influence of bicortical techniques in internal connection placed in premaxillary area by 3D finite element analysis. Comput Methods Biomech Biomed Engin. 20(2):193-200. (2)
Verri, F. R., et al. (2017). Biomechanical Three-Dimensional Finite Element Analysis of Single Implant-Supported Prostheses in the Anterior Maxilla, with Different Surgical Techniques and Implant Types. Int J Oral Maxillofac Implants. 32(4): e191-e198.
Verri, F. R., et al. Three-Dimensional Finite Element Analysis of Anterior Single Implant-Supported Prostheses with Different Bone Anchorages. ScientificWorldJournal. 2015; 2015:321528.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Hiskell Fernandes Fernandes e Oliveira; Cleidiel Araujo Lemos; Ronaldo Silva Cruz; Victor Eduardo de Souza Batista; Rodrigo Capalbo da Silva; Fellippo Ramos Verri
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.