Diferentes anclajes óseos para implantes de cono Morse con diferentes longitudes en el maxilar anterior: Un análisis in silico

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i9.17729

Palabras clave:

Implantes dentales; Análisis de elementos finitos; Tejido óseo.

Resumen

Este estudio tuvo como objetivo evaluar la distribución de tensiones en tejido óseo, en implantes Morse y componentes que sostienen una corona en la zona anterior maxilar, bajo diferentes anclajes óseos (convencional, bicortical y bicortical con elevación nasal) y longitudes de implante (8,5mm, 10mm y 11,5mm) utilizando análisis de elementos finitos 3D. Se simularon tres modelos 3D, incluido el elemento 11, utilizando el software InVesalius, Rhinoceros 3D y SolidWorks. Se reconstruyeron modelos de bloques óseos a partir de tomografía computarizada y se simuló la colocación de un implante de 4mm de diámetro y longitudes antes mencionadas, soportando la corona de circonio cementado. Los modelos 3D fueron procesados por el software de elementos finitos FEMAP y NeiNastran, utilizando una carga de 178N se aplicaron a 0º, 30º y 60º, considerando el eje largo del implante. Los resultados se visualizaron como el estrés de von Mises, el estrés principal máximo y microdeformación. Los anclajes óseos bicorticales mostraron menor tensión y microesfuerzo del tejido óseo en comparación con el convencional. No se observaron diferencias entre la elevación bicortical y del piso nasal. En cuanto a implantes y componentes, la distribución de tensiones fue similar entre modelos con escaso alivio de tensiones en la región apical de los implantes con anclaje convencional. llegamos a la conclusión de que es que la carga no axial mostró un peor comportamiento biomecánico para el tejido óseo y los implantes/componentes. Se deben preferir las técnicas bicorticales durante la colocación del implante para reducir la tensión y la microesfuerzo.

Citas

Ahn, S. J., Leesungbok, R., Lee, S. W., Heo, Y. K., & Kang, K. L. (2012). Differences in implant stability associated with various methods of preparation of the implant bed: an in vitro study. J Prosthet Dent. 107(6): 366-72.

Castro, D. S., et al. (2014). Comparative histological and histomorphometrical evaluation of marginal bone resorption around external hexagon and Morse cone implants: an experimental study in dogs. Implant Dent. 23(3):270-6.

Cruz, R. S., et al. (2018). Short implants versus longer implants with maxillary sinus lift. A systematic review and meta-analysis. Braz Oral Res.32:e86.

Cruz, R. S., et al. (2020). Clinical comparison between crestal and subcrestal dental implants: A systematic review and meta-analysis. J Prosthet Dent. S0022-3913(20)30691-0.

de Souza Batista, V. E., et al. (2017) Finite element analysis of implant-supported prosthesis with pontic and cantilever in the posterior maxilla. Comput Methods Biomech Biomed Engin. 20(6): 663-670. (2)

de Souza Batista, V. E, et al. (2017). Evaluation of the effect of an offset implant configuration in the posterior maxilla with external hexagon implant platform: A 3-dimensional finite element analysis. J Prosthet Dent. 118(3): 363-371.

Faria PE, et al. (2016). Immediate loading of implants in the edentulous mandible: a multicentre study. Oral Maxillofac Surg. 20(4): 385-390.

Felisati G, et al. (2013). Sinonasal complications resulting from dental treatment: outcome-oriented proposal of classification and surgical protocol. Am J Rhinol Allergy. 27(4): e101-6.

Frost, H. M. (2003). Bone's mechanostat: a 2003 update. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 275: 1081-1101.

Goiato M. C, et al. (2014). Longevity of dental implants in type IV bone: a systematic review. Int J Oral Maxillofac Surg. 43(9):1108-16.

Gonçalves, T. M, et al. (2015). Long-term Short Implants Performance: Systematic Review and Meta-Analysis of the Essential Assessment Parameters. Braz Dent J. 26(4): 325-36.

Guida, L, et al. (2020). 6-mm-short and 11-mm-long implants compared in the full-arch rehabilitation of the edentulous mandible: A 3-year multicenter randomized controlled trial. Clin Oral Implants Res. 31(1):64-73

Han, H. C, et al. (2016). Primary implant stability in a bone model simulating clinical situations for the posterior maxilla: an in vitro study. J Periodontal Implant Sci. 46(4):254-65.

Huang, H.-L., et al. (2009). Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis. The International Journal of Oral&Maxillofacial Implants. 24(3): 455–62.

Ivanoff, C. J., et al. (2000). Influence of bicortical or monocortical anchorage on maxillary implant stability: a 15-year retrospective study of Brånemark System implants. Int J Oral Maxillofac Implants; 15(1): 103–110.

Kan, B, et al. (2015). Effects of inter-implant distance and implant length on the response to frontal traumatic force of two anterior implants in an atrophic mandible: three-dimensional finite element analysis. Int J Oral Maxillofac Surg. 44(7): 908-13.

Kfir, E, et al. (2012). Minimally invasive subnasal elevation and antral membrane balloon elevation along with bone augmentation and implants placement. J Oral Implantol. 38(4): 365-76.

Lazari, P. C., et al. (2014). Influence of the veneer-framework interface on the mechanical behavior of ceramic veneers: a nonlinear finite element analysis. J Prosthet Dent. 112(4):857-63.

Lekholm, U., & Zarb, G. A. (1985). Patient selection and preparation. In: Brånemark, P.I., Zarb, G.A., Albrektsson, T. (Eds.), Tissue-integrated Prostheses. Osseointegration in Clinical Dentistry, Quintessence, Chicago, pp. 199–209.

Lemos, C. A., et al. (2016). Short dental implants versus standard dental implants placed in the posterior jaws: A systematic review and meta-analysis. J Dent. 47:8-17.

Lemos, C. A. A., et al. (2018). Retention System and Splinting on Morse Taper Implants in the Posterior Maxilla by 3D Finite Element Analysis. Braz Dent J. 29(1):30-35.

Limbert, G., et al. (2010). Trabecular bone strains around a dental implant and associated micromotions--a micro-CT-based three-dimensional finite element study. J Biomech. 43(7):1251-61.

Mangano, F., et al. (2012). Single-tooth Morse taper connection implants placed in fresh extraction sockets of the anterior maxilla: an aesthetic evaluation. Clin Oral Implants Res. 23(11): 1302-7.

Mazor, Z., et al. (2012). Nasal floor elevation combined with dental implant placement. Clin Implant Dent Relat Res. 14(5): 768-71.

Minatel, L., et al. (2017). Effect of different types of prosthetic platforms on stress-distribution in dental implant-supported prostheses. Mater Sci Eng C Mater Biol Appl. 71:35-42.

Pellizzer, E. P., et al. (2018). Biomechanical analysis of different implant-abutments interfaces in different bone types: An in silico analysis. Mater Sci Eng C Mater Biol Appl. 90: 645-650.

Santiago Junior, J F., et al. (2016). Finite element analysis on influence of implant surface treatments, connection and bone types. Mater Sci Eng C Mater Biol Appl. 63: 292-300.

Sertgöz, A. (1997) Finite element analysis study of the effect of superstructure material on stress distribution in an implant-supported fixed prosthesis. Int J Prosthodont. 10(1):19-27.

Sevimay, M., et al. (2005). Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent. Mar;93(3):227-34.

Sotto-Maior, B. S., et al. (2014). Biomechanical evaluation of subcrestal dental implants with different bone anchorages. Braz Oral Res.

Strub, J. R., et al. (2012). Prognosis of immediately loaded implants and their restorations: a systematic literature review. J Oral Rehabil. 39(9):704-17.

Telleman, G., et al. (2011). A systematic review of the prognosis of short (<10 mm) dental implants placed in the partially edentulous patient. J Clin Periodontol. 38(7): 667-76.

Toniollo, M. B., et al. (2017). A Three-Dimensional Finite Element Analysis of the Stress Distribution Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges with Regular or Short Morse Taper Implants. Int J Oral Maxillofac Implants. 32(2): 372-376.

Verri, F. R., et al. (2016). Can the modeling for simplification of a dental implant surface affect the accuracy of 3D finite element analysis? Comput Methods Biomech Biomed Engin. 19(15): 1665-72.

Verri, F. R., et al. (2017). Influence of bicortical techniques in internal connection placed in premaxillary area by 3D finite element analysis. Comput Methods Biomech Biomed Engin. 20(2):193-200. (2)

Verri, F. R., et al. (2017). Biomechanical Three-Dimensional Finite Element Analysis of Single Implant-Supported Prostheses in the Anterior Maxilla, with Different Surgical Techniques and Implant Types. Int J Oral Maxillofac Implants. 32(4): e191-e198.

Verri, F. R., et al. Three-Dimensional Finite Element Analysis of Anterior Single Implant-Supported Prostheses with Different Bone Anchorages. ScientificWorldJournal. 2015; 2015:321528.

Descargas

Publicado

03/08/2021

Cómo citar

OLIVEIRA, H. F. F. e .; LEMOS, C. A. .; CRUZ, R. S.; BATISTA, V. E. de S. .; SILVA, R. C. da .; VERRI , F. R. . Diferentes anclajes óseos para implantes de cono Morse con diferentes longitudes en el maxilar anterior: Un análisis in silico. Research, Society and Development, [S. l.], v. 10, n. 9, p. e57010917729, 2021. DOI: 10.33448/rsd-v10i9.17729. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17729. Acesso em: 26 nov. 2024.

Número

Sección

Ciencias de la salud