Glifosato em la disponibilidade de manganese en el suelo

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i9.17749

Palabras clave:

Adsorción; Herbicida; Isoterma; Micronutriente.

Resumen

El glifosato se usa ampliamente em el mundo debido a su amplia eficiencia em el control de malezas. Debido a sus propriedades quelantes, el herbicida puede formar complejos con cátiones, interfiriendo con la absorción de nutrientes po las plantas. Así, el objetivo fue evaluar la disponibilidade de manganeso (Mn) a diferentes dosis de glifosato em una muestra sin suelo, em un Quartzarenic Neosol y en un Red Yeollow Latosol. Recogido em Sinop – Mato Grosso. Para ello, se llevó a cabo un ensayo por lotes para evaluar la influencia de diferentes dosis de glifosato en la sórcion de Mn. Las dosis de glifosato evaluadas fueron: 0; 2,5; 12,5; 50 y 125 L ha-1. Las dosis de Mn fueron: 0; 15,8; 27,8; 43,2 y 57,1 mg L-1. Ambos preparados en CaCl2 a 0.01 mol L-1. El diseño experimental fue en DIC, con tres repeticiones por tratamiento. Los resultados se sometieron a análisis de varianza y, cuando fueron significativos, se analizaron mediante la prueba de Scott Knott al 5% de probabilidad. La isoterma de Freundlich fue la que mejor se ajustó a los datos. Los parámetros Kf, y n no difirieron entre tratamientos. Se observó una mayor absorción de Mn en Oxisol en comparación con Neosol. Con 15.8 mg L-1 de Mn, dosis más altas de glifosato resultaron en menos Mn disponible en la solución de los dos suelos analizados. Sin embargo, en las otras concentraciones de micronutrientes, las dosis crecientes de glifosato dieron como resultado una mayor cantidad de Mn disponible en la solución del suelo. El glifosato pudo complejar el Mn a la dosis recomendada de micronutrientes para ambos suelos.

Biografía del autor/a

Teane Taffarel, Universidade Federal de Mato Grosso

Teane Taffarel concluiu seu mestrado em 2020 no Programa de Pós-Graduação em Agronomia na UFMT/Campus Sinop.

Sayonara Andrade do Couto Moreno Arantes, Universidade Federal do Mato Grosso

Professora doutora em Solos e Nutrição Mineral de Plantas da Universidade Federal de Mato Grosso/Campus Sinop.

Milene Carvalho Bongiovani, Universidade Federal de Mato Grosso

Milene Carvalho Bongiovani es profesor de doctorado en el curso de Ingeniería Agrícola y Ambiental de la UFMT/Campus Sinop.

 

 

Pedro Alexandre Schopf, Universidade Federal de Mato Grosso

Pedro Alexandre Schopf é mestrando do Programa de Pós-Graduação em Agronomia da UFMT/Campus Sinop.

Kelte Resende Arantes, Universidade Federal de Mato Grosso

Kelte Resende Arantes é professor doutor da UFMT, atuando na área de Irrigação e Drenagem e Relação Água-Solo-Planta.

Cassiano Spaziani Pereira, Universidade Federal de Mato Grosso

Cassiano Spaziani Pereira é professor doutor da Universidade Federal de Mato Grosso/Campus Sinop, atuando na área de fitotecnia.

Citas

Andrighetti, M. S., Nachtigall, G. R., Queiroz, S. C. N. de, Ferracini, V. L., & Ayub, M. A. Z. (2014). Biodegradação de glifosato pela microbiota de solos cultivados com macieira. Revista Brasileira de Ciência do Solo, 21 (5), 1643-1653.

Basso, C. J., Santini, A. L., Lamego, F. P., & Girotto, E. (2011). Aplicação foliar de manganês em soja transgênica tolerante ao glifosato. Ciência Rural, 41 (10), 1726- 1731.

Barrett, K. A. & Mcbride, M. B. (2006). Trace element mobilization in soils by glyphosate. Soil Science Society of America Journal, 70, 1882–1888.

Beltrão, D. S., De-Campos, A. B., Moura, D. B., & Sousa, R. F. (2013). Changes in soluble manganese and iron concentrations of tropical wetland soils as influenced by glyphosate dosage. Communications in Soil Science and Plant Analysis, 44 (6), 1092–1096.

Caetano, M. S., Ramalho, T. C., Botrel, D. F., Cunha, E. F. F. da & Mello, W. C. de. (2012). Understanding the inactivation process of organophosphorus herbicides: A DFT study of glyphosate metallic complexes with Zn2+, Ca2+, Mg2+, Cu2+, Co3+, Fe3+, Cr3+, and Al3+. International Journal of Quantum Chemistry, 112 (15), 2752–2762.

Cakmak, I., Yazici, A., Tutus, Y., & Ozturk, L. (2009). Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. European Journal of Agronomy, 31.(3), 114–119.

Deka, J. & Sarma, H. P. (2012). Heavy metal contamination in soil in an industrial zone and its relation with some soil properties. Archives of Applied Science Research, 4 (2), 831-836.

EMBRAPA (1998). Centro Nacional de Pesquisa de Soja. Recomendações técnicas para a cultura da soja na região Central do Brasil. (Embrapa-Soja. Documento 107).

EMBRAPA (2018). Sistema Brasileiro de Classificação de Solos. Embrapa Solos.

Ferreira, D., F. (2011). Sisvar: a computer statistical analysis system. Ciência e agrotecnologia, 35 (6), 1039-1042.

Gros, P., Ahmed, A. A., Kühn, O. & Leinweber, P. (2019). Influence of metal ions on glyphosate detection by FMOC-Cl. Environmental Monitoring and Assessment, 191 (4).

Hippler, F. W. R., Reis, I. M. S., Boaretto, R. M., Quaggio, J. A. & Mattos Junior, D. (2014). Características adsortivas de solos e o suprimento de zinco e manganês para os citros. Citrus Research & Technology, 35(2), 73-83.

IBAMA (2020). Relatórios de comercialização de agrotóxicos. https://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos.

Inglezakis, V. J. & Poulopoulos, S. G. (2006) Adsorption, ion exchange, and catalysis: Design of operations and environmental applications. 1.ed. Amsterdam: Elsevier, 2006. 595p.

ISAAA (2018). Global Status of Commercialized Biotech/GM Crops. https://www.isaaa.org/resources/publications/briefs/default.asp.

Lane, M., Lorenz, N., Saxena, J., Ramsier, C., Dick, R. P. (2012). The effect of glyphosate on soil microbial activity, microbial community structure, and soil potassium. Pedobiologia, 55, 335-342.

Mehrabi, N. & Soleimani, M. & Yeganeh, M. & Sharififard, H. (2015). Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles. Royal Society of Chemistry Advances, 5.

Mertens, M., Höss, S., Neumann, G., Afzal, J., & Reichenbecher, W. (2018). Glyphosate, a chelating agent-relevant for ecological risk assessment? Environmental Science and Pollution Research, 25 (6), 5298–5317.

Merotto Junior, A., Wagner, J., & Meneguzzi, C. (2015) Efeitos do herbicida glifosato e da aplicação foliar de micronutrientes em soja transgênica. Bioscience Journal, 31 (2), 499-508.

Miguel, P. S. B., Gomes, F. T., Rocha, W. S. D. da, Carvalho, C. A. de, & Oliveira, A. V. de. (2016) Efeitos tóxicos do alumínio no crescimento das plantas: mecanismos de tolerância, sintomas, efeitos fisiológicos, bioquímicos e controles genéticos. Centro de Ensino Superior Revista, 24 (1), 13-29.

Moreira, S. G., Prochnow, L. I., Kiehl, J. de C., Pauletti, V., & Martin-Neto, L. (2016). Chemical forms in soil and availability of manganese and zinc to soybean in soil under different tillage systems. Soil and Tillage Research, 163, 41-53.

Motta, A. C., Reeves, D. W., & Touchton, J. T. (2002). Tillage intensity effects on chemical indicators of soil quality in two coastal plain soils. Comm. Soil Sci. Plant Anal., 3, 913- 932.

Munira, S., Farenhorst, A., & Akinremi, W. (2018). Phosphate and glyphosate sorption in soils following long-term phosphate applications. Geoderma. 313, 146-153.

Oliveira, M. W. de, Silva, V. S. G. da, Oliveira, D. C. de, Silva, J. C. T. da, & Reis, R. M. dos S. (2014). Produção e qualidade da forragem de duas variedades de cana-de-açúcar influenciadas pela adubação com cobre e manganês. Revista Científica de Produção Animal, 14 (2), 165-168.

Rampazzo, N., Todorovic, G. R., & Mentler, A. (2013) Adsorption of glyphosate and AMPA in agricultural soils. Environmental Quality, 10, 1-10.

Reis, I. M. S., Melo, W. J. de, Marques Júnior, J., Ferraudo, A. S. & Melo, G. M. P. de. (2014). Adsorção de cádmio em Latossolos sob vegetação de mata nativa e cultivados. Revista Brasileira de Ciência do Solo, 38, 1960-1969.

Shuman, L. M. (1977). Effect of soil properties on manganese interaction isotherms for four soils. Soil Science, Baltimore, 124, 77-81.

Sposito, G. (2008). The chemistry of soils. Oxford University Press.

Toni, L. R. M., Santana, H. de & Zaia, D. A. M. (2006). Adsorção de glifosato sobre solos e minerais. Química Nova, 29 (4), 829-833.

Vieira, M. G. A., Almeida Neto, A. F., Gimenes, M. L., & Silva, M. G. da. (2010). Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay, Journal of Hazardous Materials, 177, 362-371.

Zhou, D., Wang, Y., Cang, L., Hao, X., & Luo, X. (2004). Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics. Chemosphere, 57 (10), 1237-1244.

Publicado

23/07/2021

Cómo citar

TAFFAREL, T.; ARANTES, S. A. do C. M.; BONGIOVANI, M. C.; SCHOPF, P. A.; ARANTES, K. R.; PEREIRA, C. S. Glifosato em la disponibilidade de manganese en el suelo . Research, Society and Development, [S. l.], v. 10, n. 9, p. e17710917749, 2021. DOI: 10.33448/rsd-v10i9.17749. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17749. Acesso em: 27 dic. 2024.

Número

Sección

Ciencias Agrarias y Biológicas