Calidad espectral como agente inductor en la producción de compuestos fenólicos en el callo de Hyptis marrubioides Epling

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i9.18472

Palabras clave:

elicitación abiótica, cultivo de callos, HPLC, calidad de la luz, radiación UVC.; Elicitación abiótica; Cultivo de callos; HPLC; Calidad de la luz; Radiación UVC.

Resumen

Hyptis marrubioides Epling es una especie del cerrado brasileño utilizada tradicionalmente para tratar infecciones gastrointestinales y cutáneas, dolores y calambres. El uso de la radiación C (UVC) visible y ultravioleta es una estrategia prometedora para optimizar la producción de metabolitos bioactivos. Por lo tanto, se evaluó el efecto de la calidad espectral de la luz sobre la producción de metabolitos en callos de H. marrubioides.  Se inoculó ele callo en medio MS con 50% de la concentración de sal que contenía 2 mg L-1 de ácido naftalenacético (NAA) y 1 mg L-1 de bencilaminopurina (BAP). Se expusieron por 20 días, los cultivos de los callos a las cualidades espectrales de luz blanca, azul, rojo y azul + rojo, así como a la oscuridad. Además, el callo cultivado bajo luz blanca se expuso a UVC el día 21 durante 0, 30, 60, 120 y 240 segundos. La exposición del callo de H. marrubioides a la luz azul, afecta negativamente la síntesis de compuestos fenólicos. La luz roja estimula la síntesis de ácido cafeico y luteolina. La mejor condición entre los estudiados, fue en la oscuridad porque se asoció con una mayor acumulación de ácido cafeico, ácido clorogénico, ácido rosmarínico y luteolina. La exposición del callo de H. marrubioides cultivado bajo luz blanca a la radiación UVC promovió un aumento en la síntesis de ácido clorogénico, ácido ferúlico, ácido rosmarínico y luteolina.

Citas

Abbasi B.H., Tian C.L., Murch S.J., Saxena P.K., Liu C.Z. (2007). Light-enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea, Plant. Cell. Rep. 26, 1367-1372, https://doi.org/10.1007/s00299-007-0344-5.

Abd El-Aal M.S., Rabie K.A.E., Manaf H.H. (2016). The effect of uv-c on secondary metabolites production of echinacea purpurea culture in vitro, J. Biol. Chem. Environ. Sci. 11, 465-483.

Ahmad N., Rab A., Ahmad N. (2016). Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert), J. Photochem. Photobiol. B 154, 51-56, https://doi.org/10.1016/j.jphotobiol.2015.11.015.

Almeida E.P., R.P. Oliveira, Dantas J.L.L. (2001). Indução e desenvolvimento de calos e embriões somáticos em mamoeiro, Sci. Agric. 58, 51-54, http://dx.doi.org/10.1590/S0103-90162001000100009.

Arias J.P., Zapata K., Rojano B., Arias M. (2016). Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana, J. Photochem. Photobiol. B 163, 87-91, http://dx.doi.org/10.1016/j.jphotobiol.2016.08.014.

Arrigoni-Blank M.F., Antoniolli A.R., Caetano L.C., Campos D.A., Blank A.F., Alves P.B. (2008). Antinociceptive activity of the volatile oils of Hyptis pectinata L. Poit. (Lamiaceae) genotypes, Phytomedicine 15, 334-339, https://doi.org/10.1016/j.phymed.2007.09.009.

Barbosa P.P.P., Ramos C.P. (1992). Studies on the antiulcerogenic activity of the essential oil of Hyptis mutabilis Briq. in Rats, Phytother. Res. 6, 114-115, https://doi.org/10.1002/ptr.2650060214.

Bourgaud F., Gravot A., Milesi S., Gontier E. (2001). Production of plant secondary metabolites: a historical perspective, Plant Sci. 2001, 839-851, https://doi.org/10.1016/S0168-9452(01)00490-3.

Bueno A.X., Moreira A.T.S., Silva F.T. (2006). Estevam C.S., Marchioro M., Effects of the aqueous extract from Hyptis pectinata leaves on rodent central nervous system, Rev. Brasil. Farmacogn. 16, 317-323, https://doi.org/10.1590/S0102-695X2006000300007.

Carvalho S.D., Folta K.M. (2014). Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content, Hortic. Res. 1, 1-13, http://dx.doi.org/10.1038/hortres.2014.8.

Cetin E.S. (2014). Induction of secondary metabolite production by UV-C radiation in Vitis vinifera L. Öküzgözü callus cultures, Biol. Res. 47, 37, https://doi.org/10.1186/0717-6287-47-37.

Coelho G.C., Rachwal M.F.G., Dedecek R.A., Curcio G.R., Nietsche K., Schenkel E.P. (2007). Effect of light intensity on methylxanthine contents of Ilex paraguariensis A. St. Hil, Biochem. Syst. Ecol. 35 75-80, https://doi.org/10.1016/j.bse.2006.09.001.

Costa J.G.M., Rodrigues F.F.G., Angélico E.C., Silva M.R., Mota M.L., Santos N.K.A., Cardoso A.L.H., Lemos T.L.G. (2005). Estudo químico-biológico dos óleos essenciais de Hyptis martiusii, Lippia sidoides e Syzigium aromaticum frente às larvas do Aedes aegypti, Rev. Brasil. Farmacogn. 15, https://doi.org/10.1590/S0102-695X2005000400008.

Coutinho H.D.M., Costa J.G.M., Lima E.O., Falcão-Silva V.S.,. Siqueira-Júnior J.P. (2009). In vitro interference of Hyptis martiusii Benth. & chlorpromazine against an aminoglycoside - resistant Escherichia coli, Indian J. Med. Res. 129, 566-568.

Dias M.I., Sousa M.J., Alves R.C., Ferreira I.C.F.R. (2016). Exploring plant tissue culture to improve the production of phenolic compounds: a review, Ind. Crop. Prod. 82, 9-22, https://doi.org/10.1016/j.indcrop.2015.12.016.

Fazal H., Abbasi B.H., Ahmad N., Ali S.S., Akbar F., Kanwal F. (2016). Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L, J. Photochem. Photobiol. B 159, 1-7, https://doi.org/10.1016/j.jphotobiol.2016.03.008.

Ferreira D.F., SISVAR: a computer statistical analysis system, Cien. Agrotec. 35 (2011) 1039-1042, http://dx.doi.org/10.1590/S1413-70542011000600001.

Gupta S.K., Sharma M., Deeba F., Pandey V. (2017). Plant Response: UV-B Avoidance Mechanisms, in: V.P. Singh, S. Singh, S.M. Prasad, P. Parihar (Eds.) UV-B radiation: from environmental stressor to regulator of plant growth, Wiley Blackwell, Chichester, pp. 227-258.

Hernandez-Aguilar, C., Dominguez-Pacheco, A., Tenango, M. P., Valderrama-Bravo, C., Hernández, M. S., Cruz-Orea, A., & Ordonez-Miranda, J. (2021). Characterization of bean seeds, germination, and phenolic compounds of seedlings by UV-C radiation. Journal of Plant Growth Regulation, 40(2), 642-655, https://doi.org/10.1007/s00344-020-10125-0.

Huché-Thélier L., Crespel L., Gourrierec J.L., Morel P., Sakr S., Leduc N. (2016). Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture, Environ. Exp. Bot 121, 22-38, https://doi.org/10.1016/j.envexpbot.2015.06.009.

Kokotkiewicz A., Bucinski A., Luczkiewicz M. (2014). Light and temperature conditions affect bioflavonoid accumulation in callus cultures of Cyclopia subternata Vogel (honeybush), Plant Cell Tissue Organ Cult. 118, 589-593, https://doi.org/10.1007/s11240-014-0502-8.

Kravets A.P., Sokolova D.A., Vengzhen G.S., Grodzinskiĭ D.M. (2013). [Fractionated UV-C irradiation effects on the changes of transcribed and satellite DNA methylation profile and unstable chromosomal aberration yield], Radiats. Biol. Radioecol. 53, 583-591.

Kuhnt M., Probstle A., Rimpler H., Bauer R., Heinrich M. (1995). Biological and pharmacological activities and further constituents of Hyptis verticillata, Planta Med. 61, 227-232, https://doi.org/10.1055/s-2006-958061.

Liu W., Liu C., Yang C., Wang L., Li S. (2010). Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation, Food Chem. 122, 475-481.

Liu Z., Zhang Y., Wang J., Li P., Zhao C., Chen Y., Bi Y. (2015). Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings, Plant. Sci. 238, 64-72, https://doi.org/10.1016/j.plantsci.2015.06.001.

Luis J.C., Pérez R.M., González F.V. (2007). UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants, Food Chem. 101, 1211-1215, https://doi.org/10.1016/j.foodchem.2006.03.023.

Marti G., Schnee S., Andrey Y., Simoes-Pires C., Carrupt P.A., Wolfender J.L., Gindro K. (2014). Study of leaf metabolome modifications induced by UV-C radiations in representative Vitis, Cissus and Cannabis species by LC-MS based metabolomics and antioxidant assays, Molecules 19, 14004-14021, https://doi.org/10.3390/molecules190914004.

Moon S.H., Mistry B., Kim D.H., Pandurangan M. (2017). Antioxidant and anticancer potential of bioactive compounds following UV-C light-induced plant cambium meristematic cell cultures, Ind. Crop. Prod. 109, 762-772, https://doi.org/10.1016/j.indcrop.2017.09.024.

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant. 15, 473-497, https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Murthy H.N., Lee E.J., Paek K.Y. (2014). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation, Plant Cell Tissue Organ Cult. 118, 1-16, https://doi.org/10.1007/s11240-014-0467-7.

Ramakrishna A., Ravishankar G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants, Plant. Signal. Behav. 6, 1720-1731, https://doi.org/10.4161/psb.6.11.17613.

Rodrigues V.E.G., Carvalho D.A.D. (2001). Levantamento etnobotânico de plantas medicinais no domíniodo cerrado na região do alto rio Grande – Minas Gerais, Cien. Agrotec. 25, 102-123.

Tariq U., Ali M., Abbasi B.H. (2014). Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L, J. Photochem. Photobiol. B 130, 264-271, http://dx.doi.org/10.1016/j.jphotobiol.2013.11.026.

Tiecher A., de Paula L.A., Chaves F.C., Rombaldi C.V. (2013). UV-C effect on ethylene, polyamines and the regulation of tomato fruit ripening, Postharvest Biol. Technol. 86, 230-239, https://doi.org/10.1016/j.postharvbio.2013.07.016

Urban L., Charles F., de Miranda M.R.A., Aarrouf J. (2016). Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest, Plant Physiol. Biochem. 105, 1-11, https://doi.org/10.1016/j.plaphy.2016.04.004.

Villacís‐Chiriboga, J., Elst, K., Van Camp, J., Vera, E., & Ruales, J. (2020). Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Comprehensive Reviews in Food Science and Food Safety, 19(2), 405-447, https://doi.org/10.1111/1541-4337.12542.

Wang H., Ma L.G., Li J.M., Zhao H.Y., Deng X.W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development, Science 294, 154-158, https://doi.org/10.1126/science.1063630.

Wargent J.J., Jordan B.R. (2013). From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production, New Phytol. 197, 1058-107, https://doi.org/10.1111/nph.12132.

Yousefzadi M., Sharifi M., Behmanesh M., Ghasempour A., Moyano E., Palazon J. (2012). The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture, Plant Physiol. Biochem. 56, 41-46, https://doi.org/10.1016/j.plaphy.2012.04.010.

Zagoskina N.V., Alyavina A.K., Gladyshko T.O., Lapshin P.V., Egorova E.A., Bukhov N.G. (2005). Ultraviolet rays promote development of photosystem II photochemical activity and accumulation of phenolic compounds in the tea callus culture (Camellia sinensis), Russ. J. Plant Physiol. 52, 731-739, https://doi.org/10.1007/s11183-005-0109-3.

Zagoskina N.V., Dubravina G.A., Alyavina A.K., Goncharuk E.A. (2003). Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures, Russ. J. Plant Physiol. 50, 270-275, https://doi.org/10.1023/A:1022945819389.

Descargas

Publicado

02/08/2021

Cómo citar

DANTAS, L. A. .; FARIA , P. S. A. .; MELO, A. M. de; ROSA, M.; RESENDE, E. C. .; PEREIRA, P. S. .; SILVA, F. G. .; RUBIO NETO, A. Calidad espectral como agente inductor en la producción de compuestos fenólicos en el callo de Hyptis marrubioides Epling. Research, Society and Development, [S. l.], v. 10, n. 9, p. e59210918472, 2021. DOI: 10.33448/rsd-v10i9.18472. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18472. Acesso em: 2 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas