Physalis peruviana L.: perspectiva de aplicabilidad en el tratamiento del câncer
DOI:
https://doi.org/10.33448/rsd-v10i10.18700Palabras clave:
Physalis piruviana; Cáncer; Extractos vegetales; Vitanólidos.Resumen
Physalis peruviana L. es una planta muy utilizada en la alimentación porque aporta potenciales beneficios para la salud asociados a mejoras en los procesos fisiológicos, los cuales están relacionados con la presencia de importantes bioactivos, como fitoesteroles, polifenoles y vitaminas A y C, y por ser considerada un El alimento natural funcional ha sido objeto de interés científico y comercial debido a su variedad de compuestos. El presente estudio buscó realizar un relevamiento sistemático de la evidencia científica que posibilite el uso de esta planta en el tratamiento del cáncer. La revisión consistió en estudios experimentales originales, publicados en revistas nacionales e internacionales, que respondieron a la pregunta orientadora: ¿Cuál es la evidencia disponible en la literatura sobre el potencial de la especie Physalis peruviana para el tratamiento del cáncer? Los resultados de la investigación mostraron que Physalis peruviana L. en sus derivados mostró actividades citotóxicas contra varios tipos de células cancerosas, a través de diferentes mecanismos y vías apoptóticas, como la activación de las caspasas 9, 8 y 3, liberación de citocromo C, activación de la proteína p53 y activación de Bax y Bcl-2, un importante mecanismo de actividad anticancerosa, además de la selectividad mostrada en algunos de los estudios, permitiendo el desarrollo de alternativas terapéuticas más seguras.
Citas
Al-Olayan, E. M. et al (2014). The potential protective effect of Physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP-9 expression. Oxidative medicine and cellular longevity, 2014.
Arbiastutie, Y. et al. (2017). The potential of understorey plants from Gunung Gede Pangrango National Park (West Java, Indonesia) as cervixs anticancer agents. Biodiversitas Journal of Biological Diversity, 18 (1).
Areiza-Mazo, N. et al. (2018). Extracts of Physalis peruviana protect astrocytic cells under oxidative stress with rotenone. Frontiers in chemistry, 6, 276.
Areiza-Mazo, N.; Maldonado, M. E. & Rojano, B. (2013). Extracto acuoso de uchuva (Physalis peruviana): actividades antiproliferativa, apoptótica y antioxidante. Perspectivas en Nutrición Humana, 15 (1), 41-55.
Augenlicht, L., Heerdt, B. (2001) Mitochondria: integrators in tumorigenesis? Nature Genetics. 28, 104–105.
Ballesteros-Vivas, D. et al. (2019). Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. Journal of Functional Foods, 63, p. 103567.
Baloyiannis, I. et al (2021). Current evidence regarding the role of adjuvant chemotherapy in rectal cancer patients with pathologic complete response after neoadjuvant chemoradiotherapy: a systematic review and meta-analysis. International Journal of Colorectal Disease, p. 1-12.
Bergers, Gabriele & Fendt, S.M (2021). The metabolism of cancer cells during metastasis. Nature Reviews Cancer, 1-19.
Çakir, Ö. et al. (2014). Evaluation of biological activities of Physalis peruviana ethanol extracts and expression of Bcl-2 genes in HeLa cells. Food Science and Technology, 34 (2), p. 422-430.
Chang, L. C. et al. (2016) Poha berry (Physalis peruviana) with potential anti-inflammatory and cancer prevention activities. Hawai'i Journal of Medicine & Public Health, v. 75, n. 11, p. 353.
Chiu, C. C. et al. (2013). Golden berry-derived 4β-hydroxywithanolide E for selectively killing oral cancer cells by generating ROS, DNA damage, and apoptotic pathways. PloS one, 8 (5),64739.
De Almeida, E. M. et al. (2020) Therapeutic potential of medicinal plants indicated by the Brazilian public health system in treating the collateral effects induced by chemotherapy, radiotherapy, and chemoradiotherapy: A systematic review. Complementary therapies in medicine, 49, 102293.
El-Meghawry, El-Kenawy, A.; Elshama, S. S. & Osman, H. E. H. (2015). Effects of Physalis peruviana L on toxicity and lung cancer induction by nicotine derived nitrosamine ketone in rats. Asian Pacific Journal of Cancer Prevention, 16 (4), 5863-5868.
Fouché, G. et al. (2008). In vitro anticancer screening of South African plants. Journal of ethnopharmacology, 119 (3), 455-461.
Galvão, M. C. B. & Ricarte, I. L. M. (2019). Revisão Sistemática Da Literatura: conceituação, produção e publicação. Logeion: Filosofia da Informação, 6(1), 57-73
Hanna, T. P. et al. (2020). Mortality due to cancer treatment delay: systematic review and meta-analysis. BMJ, 371.
Hassan, H. A. et al. (2017). Cape gooseberry (Physalis peruviana) juice as a modulator agent for hepatocellular carcinoma-linked apoptosis and cell cycle arrest. Biomedicine & Pharmacotherapy, 94, 1129-1137.
Henrich, C. J. et al. (2015). Withanolide E sensitizes renal carcinoma cells to TRAIL-induced apoptosis by increasing cFLIP degradation. Cell death & disease, 6 (2), e1666-e1666.
Herrera-Calderon, O. et al. (2018). Phytochemical screening, total phenolic content, antioxidant, and cytotoxic activity of five peruvian plants on human tumor cell lines. Pharmacognosy Research, v. 10, n. 2, p. 161.
Hilal-Dandan, R.& Brunton, L. (2015). Quimioterapia das doenças neoplásicas. In: Manual de Farmacologia e Terapêutica de Goodman & Gilman. Ed. 2. Editora: AMGH.
Hsieh, K.Y. et al. (2021). Golden berry 4β-hydroxywithanolide E prevents tumor necrosis factor α-induced procoagulant activity with enhanced cytotoxicity against human lung cancer cells. Scientific reports, 11 (1), 1-12.
Huang, M. et al. (2020). Withanolides from the genus Physalis: A review on their phytochemical and pharmacological aspects. Journal of Pharmacy and Pharmacology, 72 (5), 649-669.
Lan, Y. H. et al. (2009). New cytotoxic withanolides from Physalis peruviana. Food Chemistry, 116 (2), 462-469.
Lee, C.C. et al. (2017). 4β-Hydroxywithanolide E modulates alternative splicing of apoptotic genes in human hepatocellular carcinoma Huh-7 cells. Scientific reports, 7 (1), 1-13.
Martínez-Aledo, N.; Navas-Carrillo, D. & Orenes-Piñero, E. (2020). Medicinal plants: active compounds, properties and antiproliferative effects in colorectal cancer. Phytochemistry Reviews, 19 (1), 123-137.
Mbaveng, Armelle T. et al. (2018). Cytotoxicity of 18 Cameroonian medicinal plants against drug sensitive and multi-factorial drug resistant cancer cells. Journal of ethnopharmacology, 222, 21-33.
Mier-Giraldo, H. et al. (2017) Cytotoxic and immunomodulatory potential activity of Physalis peruviana fruit extracts on cervical cancer (HeLa) and fibroblast (L929) cells. Journal of evidence-based complementary & alternative medicine, 22 (4), 777-787.
Nagata, S., Tanaka, M. (2017). Programmed cell death and the immune system. Nature Reviews Immunology, 7, 333–340.
Ohayon, S.; Refua, M .; Hendler, A .; Aharoni, A .& Brik, A. (2015). Harnessing the oxidation susceptibility of deubiquitinases para a inibição com pequenas moléculas. Angewandte Chemie International Edition, 54, 599–603.
Omara, T. et al. (2020) Medicinal plants used in traditional management of cancer in Uganda: a review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evidence-Based Complementary and Alternative Medicine, 2020, 3529081.
Park, E. J et al. (2016). Induction of cell cycle arrest and apoptosis with downregulation of Hsp90 client proteins and histone modification by 4β‐hydroxywithanolide E isolated from Physalis peruviana. Molecular nutrition & food research, 60 (6), 1482-1500.
Peng, C. Y et al. (2016). The roles of 4β-hydroxywithanolide E from Physalis peruviana on the Nrf2-anti-oxidant system and the cell cycle in breast cancer cells. The American journal of Chinese medicine, 44 (03), 617-636.
Puente, L. et al. (2021). Effects of drying methods on the characterization of fatty acids, bioactive compounds and antioxidant capacity in thin layer of physalis (Physalis peruviana L.) pulp. Journal of Food Science and Technology, 58 (4),1470-1479.
Quispe-Mauricio, A. et al. (2009) Actividad citotóxica de Physalis peruviana (aguaymanto) en cultivos celulares de adenocarcinoma colorectal, próstata y leucemia mieloide crónica. Revista de Gastroenterología del Perú, v. 29 (3), 239-246.
Ramadan, Manal M. et al. (2015) Volatile compounds, antioxidants, and anticancer activities of Cape gooseberry fruit (Physalis peruviana L.): an in-vitro study. Journal of the Arab Society for Medical Research, 10 (2), 56.
Ramadan, M. F. (2020). Bioactive phytochemicals of cape gooseberry (Physalis peruviana L.). Bioactive Compounds in Underutilized Fruits and Nuts, 75-90.
Rao, P.C et al. (2016). Cytotoxicity of withasteroids: Withametelin induces cell cycle arrest at G2/M phase and mitochondria-mediated apoptosis in non-small cell lung cancer A549 cells. Tumor Biology, 37 (9), 12579-12587.
Rodríguez, S. & Rodríguez, E. (2007). Efecto de la ingesta de Physalis peruviana (aguaymanto) sobre la glicemia postprandial en adultos jóvenes. Revista Médica Vallejiana, 4(1), 43−52.
Sedrak, M. S. et al. (2021). Older adult participation in cancer clinical trials: A systematic review of barriers and interventions. CA: A Cancer Journal for Clinicians, 71 (1), 78-92.
Shebbo, S.; El Joumaa, M.; Kawach, R & Borjac, J. (2020) Hepatoprotective effect of Matricaria chamomilla aqueous extract against 1,2-Dimethylhydrazine-induced carcinogenic hepatic damage in mice. Heliyon. 6 (6), e04082.
Shenstone, E; Lippman, Z. & Van Eck, J. (2020). A review of nutritional properties and health benefits of Physalis species. Plant Foods for Human Nutrition, 75, 316-325.
Silveira, E. A. et al. (2021). Visceral obesity and incident cancer and cardiovascular disease: An integrative review of the epidemiological evidence. Obesity Reviews, 22 (1), e13088.
Tang, J.Y. et al. (2018). 4β‐Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells. Environmental toxicology, 33 (3), 295-304.
Vega, J.C et al. (2020). Conservation advances on Physalis peruviana L. and Spondia purpurea: a review. Food Science and Technology.
Wu, S.J. et al. (2004a) Antihepatoma activity of Physalis angulata and P. peruviana extracts and their effects on apoptosis in human Hep G2 cells. Life sciences, 74 (16), 2061-2073.
Wu, S.J. et al (2004b). Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and the mitochondrial signaling transduction pathway. Cancer Letters. 215, 199–208.
Wu, S. J et al. (2009). Supercritical carbon dioxide extract of Physalis peruviana induced cell cycle arrest and apoptosis in human lung cancer H661 cells. Food and Chemical Toxicology, 47 (6), 1132-1138.
Xu, S.J et al. (2021) The synthesis and cytotoxic activity of derivatives of 4β-hydroxywithanolide E. Steroids, v. 166, 108776.
XU, Y.M. et al. (2017). Withanolides from aeroponically grown Physalis peruviana and their selective cytotoxicity to prostate cancer and renal carcinoma cells. Journal of natural products, 80 (7), 1981-1991.
Ye, Z.N. et al. (2019). Physalis peruviana-Derived 4β-Hydroxywithanolide E, a Novel Antagonist of Wnt Signaling, Inhibits Colorectal Cancer In Vitro and In Vivo. Molecules, 24 (6), 1146.
Yen, C.Y. et al. (2010) 4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G 2/M arrest. BMC cancer, 10 (1),1-8.
You, B.-J. et al. (2014) Non-homologous end joining pathway is the major route of protection against 4β-hydroxywithanolide E-induced DNA damage in MCF-7 cells. Food and chemical toxicology, 65, 205-212.
Yu, T. J et al. (2021). Physalis peruviana-Derived Physapruin A (PHA) Inhibits Breast Cancer Cell Proliferation and Induces Oxidative-Stress-Mediated Apoptosis and DNA Damage. Antioxidants, 10 (3), 393.
Zavala, D et al. (2006) Efecto citotóxico de Physalis peruviana (capulí) en cáncer de colon y leucemia mieloide crónica. In: Anales de la Facultad de Medicina. UNMSM. Facultad de Medicina, 283-289.
Zimmer, T. B, R. et al. (2021) Biological potential of hydroalcoholic extracts of Physalis pubescens L. Biocatalysis and Agricultural Biotechnology, 31, 101895.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Brenda Nayranne Gomes dos Santos; Leide Maria Soares de Sousa; Nalbert Brendo Gomes dos Santos; Aldenora Maria Ximenes Rodrigues; Antonia Maria das Graças Lopes Citó; Livio Cesar Nunes Cunha; Maria Das Graças Freire de Medeiros
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.