Valor agregado de residuos agroindustriales de jatropha (Araucaria angustifolia) por extracción de celulosa

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.18836

Palabras clave:

Cascarilla de piñón; Extracción de celulosa; Agregación de valor.

Resumen

Araucaria (Araucaria angustifolia) es una especie de árbol que se encuentra en el sureste y sur de Brasil. También se le conoce como pino brasileño, presentando frutos de alta aceptación. Sin embargo, su procesamiento genera subproductos poco utilizados. Así, este trabajo tuvo como objetivo extraer y caracterizar la celulosa obtenida de la cáscara del piñón, así como evaluar los contenidos de ceniza, lignina, celulosa y α-celulosa en su composición. La materia prima y la celulosa extraída se caracterizaron mediante análisis de fluorescencia de rayos X (XRF), difracción de rayos X (XRD), espectroscopia infrarroja por transformada de Fourier (FTIR) y análisis termogravimétrico (TGA). En cuanto a los contenidos de composición química detectados, las cáscaras presentaron 1,6% de ceniza, 7% de extractos, 34% de lignina y 55% de celulosa, siendo 46% de α-celulosa y 9% de hemicelulosa. Se observó mediante XRD que la eliminación de materiales amorfos dio como resultado una ganancia de cristalinidad (del 19 al 33%). Comprobando la eficiencia de la extracción, la caracterización de la celulosa obtenida se mostró de alta pureza, ya que desaparecieron la banda principal de la lignina (FTIR) y los materiales amorfos de la muestra celulósica (TGA). Finalmente, este trabajo demuestra que la corteza del piñón es una rica fuente de celulosa, lo que permite la obtención de nanocristales.

Citas

ABRAF. (2013). Anuário Estatístico da ABRAF. Brasilia.

Babich, O., Dyshlyuk, L., Noskova, S., Sukhikh, S., Prosekov, A., Ivanova, S., & Pavsky, V. (2019). In vivo study of the potential of the carbohydrate-mineral complex from pine nut shells as an ingredient of functional food products. Bioactive Carbohydrates and Dietary Fibre. https://doi.org/10.1016/j.bcdf.2019.100185

Barros, S. de S., Oliveira, E. da S., Pessoa Jr, W. A. G., Rosas, A. L. G., Freitas, A. E. M. de, Lira, M. S. de F., … Freitas, F. A. de. (2021). Waste açaí (Euterpe precatoria Mart.) seeds as a new alternative source of cellulose: Extraction and characterization. Research, Society and Development, 10(7), e31110716661. https://doi.org/10.33448/rsd-v10i7.16661

da Silva, E., de Lima, O. G., de Andrade, D. P., & Brown, G. G. (2019). Earthworm populations in forestry plantations (Araucaria angustifolia, Pinus elliottii) and Native Atlantic forest in Southern Brazil compared using two sampling methods. Pedobiologia. https://doi.org/10.1016/j.pedobi.2018.10.002

Daudt, R. M., Sinrod, A. J. G., Avena-Bustillos, R. J., Külkamp-Guerreiro, I. C., Marczak, L. D. F., & McHugh, T. H. (2017). Development of edible films based on Brazilian pine seed (Araucaria angustifolia) flour reinforced with husk powder. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2017.04.033

De Freitas, T. B., Santos, C. H. K., da Silva, M. V., Shirai, M. A., Dias, M. I., Barros, L., … Leimann, F. V. (2018). Antioxidants extraction from Pinhão (Araucaria angustifolia (Bertol.) Kuntze) coats and application to zein films. Food Packaging and Shelf Life. https://doi.org/10.1016/j.fpsl.2017.10.006

de S. Barros, S., Pessoa Junior, W. A. G., Sá, I. S. C., Takeno, M. L., Nobre, F. X., Pinheiro, W., … de Freitas, F. A. (2020). Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresource Technology. https://doi.org/10.1016/j.biortech.2020.123569

Henríquez, C., Escobar, B., Figuerola, F., Chiffelle, I., Speisky, H., & Estévez, A. M. (2008). Characterization of piñon seed (Araucaria araucana (Mol) K. Koch) and the isolated starch from the seed. Food Chemistry. https://doi.org/10.1016/j.foodchem.2007.08.040

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. (2018). Produção da Extração Vegetal e da Silvicultura 2017. Rio de Janeiro: IBGE.

Jacinto, R. C., Brand, M. A., da Cunha, A. B., Souza, D. L., & da Silva, M. V. (2017). Utilização de resíduos da cadeia produtiva do pinhão para a produção de pellets para geração de energia. Floresta. https://doi.org/10.5380/rf.v47i1.52080

Kale, R. D., Bansal, P. S., & Gorade, V. G. (2018). Extraction of Microcrystalline Cellulose from Cotton Sliver and Its Comparison with Commercial Microcrystalline Cellulose. Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-017-0936-2

Karlsruhe. (1995). ICSD – Inorganic Crystal Structure Database. Gmchin-Intitut fur Anorganishe Chemie und Fachinformationszentrum FIZ.

Kumode, M. M. N., Bolzon, G. I. M., Magalhães, W. L. E., & Kestur, S. G. (2017). Microfibrillated nanocellulose from balsa tree as potential reinforcement in the preparation of ‘green’ composites with castor seed cake. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.02.083

Lan, W., Liu, C. F., & Sun, R. C. (2011). Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf201508g

Lobosco, M. P. J., Silva, R. M. C. R. A., Pereira, E. R., Carneiro, E. C. da S. P., & Andrade, A. C. dos S. (2020). The relationship between environmental education and natural sunscreens: an integrative review. Research, Society and Development, 9(6), e158963535. https://doi.org/10.33448/rsd-v9i6.3535

MANTOVANI, A., COSTA, N., & Freitas, C. (2018). Situação Atual e Conservação das Florestas com Araucária. SEMINÁRIO SUL-BRASILEIRO SOBRE A SUSTENTABILIDADE DA ARAUCÁRIA. Passo Fundo, RS.

Manzato, L., Trichês, D. M., De Souza, S. M., & De Oliveira, M. F. (2014). Synthesis of nanostructured SnO and SnO2 by high-energy milling of Sn powder with stearic acid. Journal of Materials Research. https://doi.org/10.1557/jmr.2013.220

Mendonça, I. M., Machado, F. L., Silva, C. C., Duvoisin Junior, S., Takeno, M. L., de Sousa Maia, P. J., … de Freitas, F. A. (2019). Application of calcined waste cupuaçu (Theobroma grandiflorum) seeds as a low-cost solid catalyst in soybean oil ethanolysis: Statistical optimization. Energy Conversion and Management, 200(September), 112095. https://doi.org/10.1016/j.enconman.2019.112095

Mendonça, I. M., Paes, O. A. R. L., Maia, P. J. S., Souza, M. P., Almeida, R. A., Silva, C. C., … de Freitas, F. A. (2019). New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study. Renewable Energy, 130, 103–110. https://doi.org/10.1016/j.renene.2018.06.059

Meng, F., Zhang, X., Yu, W., & Zhang, Y. (2019). Kinetic analysis of cellulose extraction from banana pseudo-stem by liquefaction in polyhydric alcohols. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2019.05.025

Mokhena, T. C., & John, M. J. (2020). Esterified cellulose nanofibres from saw dust using vegetable oil. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2020.01.278

Montagna, T., Lauterjung, M. B., Costa, N. C. F. da, Bernardi, A. P., Candido-Ribeiro, R., & Reis, M. S. dos. (2019). Guidelines for seed collection of Araucaria angustifolia (Bertol.) Kuntze: A genetic, demographic and geographic approach. Forest Ecology and Management. https://doi.org/10.1016/j.foreco.2019.02.006

Naduparambath, S., T.V., J., Shaniba, V., M.P., S., Balan, A. K., & Purushothaman, E. (2018). Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2017.09.088

Oprea, M., & Voicu, S. I. (2020). Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2020.116683

Peralta, R. M., Koehnlein, E. A., Oliveira, R. F., Correa, V. G., Corrêa, R. C. G., Bertonha, L., … Ferreira, I. C. F. R. (2016). Biological activities and chemical constituents of Araucaria angustifolia: An effort to recover a species threatened by extinction. Trends in Food Science and Technology. https://doi.org/10.1016/j.tifs.2016.05.013

Phys., Chem., M. (2018). A. Vorokh, Scherrer formula: estimation of error in determining small nanoparticle size. Https://Doi.Org/10.17586/2220-8054-2018-9-3-364-369, (https://doi.org/10.17586/2220-8054-2018-9-3-364-369), https://doi.org/10.17586/2220-8054-2018-9-3-364-36.

Pinheiro, I. F., Ferreira, F. V., Souza, D. H. S., Gouveia, R. F., Lona, L. M. F., Morales, A. R., & Mei, L. H. I. (2017). Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. European Polymer Journal. https://doi.org/10.1016/j.eurpolymj.2017.10.026

Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography. https://doi.org/10.1107/s0021889869006558

Robles Barros, P. J., Ramirez Ascheri, D. P., Siqueira Santos, M. L., Morais, C. C., Ramirez Ascheri, J. L., Signini, R., … Alessandro Devilla, I. (2020). Soybean hulls: Optimization of the pulping and bleaching processes and carboxymethyl cellulose synthesis. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.12.074

Santos, C. H. K., Baqueta, M. R., Coqueiro, A., Dias, M. I., Barros, L., Barreiro, M. F., … Leimann, F. V. (2018). Systematic study on the extraction of antioxidants from pinhão (araucaria angustifolia (bertol.) Kuntze) coat. Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.04.057

Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal. https://doi.org/10.1177/004051755902901003

Silva, E. P. da, Dias, L. G., Marot, P. P., Goulart, G. A. S., Freitas, F. A., & Damiani, C. (2020). Fatty acid and chemical composition of the seed and the oil obtained from marolo fruit (Annona crassiflora Mart.). Research, Society and Development. https://doi.org/10.33448/rsd-v9i9.6670

Stephens, P. W. (1999). Phenomenological model of anisotropic peak broadening in powder diffraction. Journal of Applied Crystallography. https://doi.org/10.1107/S0021889898006001

Tappi. (2007). Solvent extractives of wood and pulp ( Proposed revision of T 204 cm-97 ). Tappi.

Technical Association of Pulp and Paper Industry. T204 cm-97. Solvent extractives of wood and pulp. , TAPPI test methods § (1997).

Technical Association of the Pulp and Paper Industry. (2011). TAPPI T 222: Acid-insoluble lignin in wood and pulp. In TAPPI test methods. https://doi.org/10.1023/a:1019003230537

Vanitha, R., & Kavitha, C. (2020). Development of natural cellulose fiber and its food packaging application. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.07.029

Von Dreele, A. C. L. and R. B. (1994). GSAS: General structure analysis system. LAUR 86-748.

Wijaya, C. J., Saputra, S. N., Soetaredjo, F. E., Putro, J. N., Lin, C. X., Kurniawan, A., … Ismadji, S. (2017). Cellulose nanocrystals from passion fruit peels waste as antibiotic drug carrier. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2017.08.004

Woo, K. G., Lee, J. H., Kim, M. H., & Lee, Y. J. (2004). FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting. Information and Software Technology. https://doi.org/10.1016/j.infsof.2003.07.003

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. https://doi.org/10.1016/j.fuel.2006.12.013

Zortéa-Guidolin, M. E. B., Demiate, I. M., Godoy, R. C. B. de, Scheer, A. de P., Grewell, D., & Jane, J. lin. (2017). Structural and functional characterization of starches from Brazilian pine seeds (Araucaria angustifolia). Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2016.08.022

Descargas

Publicado

10/08/2021

Cómo citar

BARROS, S. de S.; PESSOA JR., W. A. G. .; CRUZ JÚNIOR, A. .; BORGES, Z. V. .; POFFO, C. M. .; REGIS, D. M. .; FREITAS, F. A. de .; MANZATO, L. . Valor agregado de residuos agroindustriales de jatropha (Araucaria angustifolia) por extracción de celulosa. Research, Society and Development, [S. l.], v. 10, n. 10, p. e270101018836, 2021. DOI: 10.33448/rsd-v10i10.18836. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18836. Acesso em: 7 jul. 2024.

Número

Sección

Ciencias Exactas y de la Tierra