Actividades antioxidante, antimicrobiana y citotóxica de los metabolitos secundarios de Streptomyces sp. aislado de la región Amazónica-Brasileña

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.18974

Palabras clave:

Actinobacteria; Anticancer; Compuestos fenólicos; Citotoxicidad.

Resumen

Las bacterias del género Streptomyces son una fuente prometedora de productos biológicamente activos, con aplicaciones en medicina, industria y agricultura. Por lo tanto, el objetivo de este trabajo fue evaluar las actividades citotóxicas, antioxidantes y antimicrobianas de los extractos y fracciones semipurificadas de Streptomyces spp. aislada de la rizósfera de Paullinia cupana, Amazonas-Brasil. Para ello, se realizó un estudio bioguiado de la actividad citotóxica con extracto metanólico de Streptomyces sp. El extracto ACTMS-12H UFPEDA 3405 (EMeOH-12H) fue fraccionado con n-hexano, acetato de etilo y 2-butanol. La actividad antioxidante fue analizada a través de los métodos de DPPH, ABTS y fosfomolibdeno, mientras que la actividad antimicrobiana fue investigada por el método de microdilución para determinar la concentración minima inhibitoria (MIC) contra especies de bacterias y levaduras. En la prueba de citotoxicidad la fase butanólica (FbuOH-12H) presentó una IC50 de 1.1 µg/mL contra MOLT-4, con muerte celular probablemente por apoptosis, pero no causó citotoxicidad en las células mononucleares de sangre periférica (PBMC) o en eritrocitos humanos, La prospección química detectó la presencia de saponinas y azúcares reductores en la fracción de 2-butanol (FBuOH-12H), que pueden estar relacionados con la citotoxicidad. Sobre la actividad antioxidante por ABTS, la fracción de acetato de etilo (FAcOEt-12H) mostró una capacidad antioxidante de 1161.7 ± 0.04 µM de Trolox/g de extracto, indicando una expresiva reactividad de la fase con este radical. Las fases acuosas (de los extractos de hexano, acetato de etilo y metanol) fueron activas en todos los microorganismos probados, excepto E. faecalis.

Citas

Ahmed, S. A., Gogal, R. M., Jr, & Walsh, J. E. (1994). A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. Journal of immunological methods, 170(2), 211–224. https://doi.org/10.1016/0022-1759(94)90396-4.

Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature protocols, 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102.

Alley, M. C., Scudiero, D. A., Monks, A., Hursey, M. L., Czerwinski, M. J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H., & Boyd, M. R. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer research, 48(3), 589–601.

Anibou, M., Chait, A., Zyad, A., Taourirt, M., Ouhdouch, Y., & Benherref, A. (2008). Actinomycetes from Moroccan habitats: isolation and screening for cytotoxic activities. World Journal of Microbiology and Biotechnology, 24:2019–2025. https://doi.org/10.1007/s11274-008-9705-7.

Bachran, C., Bachran, S., Sutherland, M., Bachran, D., & Fuchs, H. (2008). Saponins in tumor therapy. Mini reviews in medicinal chemistry, 8(6), 575–584. https://doi.org/10.2174/138955708784534445.

Balachandran, C., Sangeetha, B., Duraipandiyan, V., Raj, M. K., Ignacimuthu, S., Al-Dhabi, N. A., Balakrishna, K., Parthasarathy, K., Arulmozhi, N. M., & Arasu, M. V. (2014). A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway. Chemico-biological interactions, 224:24–35. https://doi.org/10.1016/j.cbi.2014.09.019.

Balachandran, C., Duraipandiyan.V., Arun, Y., Sangeetha, B., Emi, N., Al-Dhabi, N. A., et al. (2016). Isolation and characterization of 2-hydroxy-9,10-anthraquinone from Streptomyces olivochromogenes (ERINLG-261) with antimicrobial and antiproliferative properties. Revista Brasileira de Farmacognosia, 26:285–95. https://doi.org/10.1016/j.bjp.2015.12.003.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.

Choi, H. J., Kim, D.W., Choi, Y. W., Lee, Y.G., Lee, Y-I., Jeong, Y. K., & Woo, H. J. (2012). Broad-spectrum in vitro antimicrobial activities of Streptomyces sp. strain BCNU 1001. Biotechnology and Bioprocess Engineering, 17:576–83. https://doi.org/10.1007/s12257-011-0151-2.

Clinical and Laboratory Standards Institute - CLSI. (2008). M38-A2 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. 2nd ed. USA.

Clinical and Laboratory Standards Institute - CLSI. (2017). M100 Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. USA.

Costa-Lotufo, L. V., Cunha, G. M., Farias, P. A., Viana, G. S., Cunha, K. M., Pessoa, C., Moraes, M. O., Silveira, E. R., Gramosa, N. V., & Rao, V. S. (2002). The cytotoxic and embryotoxic effects of kaurenoic acid, a diterpene isolated from Copaifera langsdorffii oleo-resin. Toxicon: official journal of the International Society on Toxinology, 40(8), 1231–1234. https://doi.org/10.1016/s0041-0101(02)00128-9.

Creixell, M., & Peppas, N. A. (2012). Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano today, 7(4), 367–379. https://doi.org/10.1016/j.nantod.2012.06.013.

de Almeida, C., Brito, S. A., de Santana, T. I., Costa, H., de Carvalho Júnior, C., da Silva, M. V., de Almeida, L. L., Rolim, L. A., Dos Santos, V. L., Wanderley, A. G., & da Silva, T. G. (2017). Spondias purpurea L. (Anacardiaceae): Antioxidant and Antiulcer Activities of the Leaf Hexane Extract. Oxidative medicine and cellular longevity, 2017, 6593073. https://doi.org/10.1155/2017/6593073

Ellaiah, P, Ramana, T., Raju, K., Sujatha, P., & Sankar, A. U. (2004). Investigations on marine actinomycetes from Bay of Bengal near Kakinada coast of Andhra Pradesh. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 6:53–6.

Fuchs, H., Bachran, D., Panjideh, H., Schellmann, N., Weng, A., Melzig, M. F., Sutherland, M., & Bachran, C. (2009). Saponins as tool for improved targeted tumor therapies. Current drug targets, 10(2), 140–151. https://doi.org/10.2174/138945009787354584.

Genuário, D. B., Vaz, M. G. M. V., Santos, S. N., Kavamura, V. N., & Melo, I. S. (2019). Cyanobacteria From Brazilian Extreme Environments. Microbial Diversity in the Genomic Era, 265–284. https://doi.org/10.1016/b978-0-12-814849-5.00016-2.

Gupta D. (2015). Methods for determination of antioxidant capacity: A review. International Journal of Pharmaceutical Sciences and Research, 6:546–66. https://doi.org/10.13040/IJPSR.0975-8232.6(2).546-66.

Haque, M. A., Sarker, A. K., Rahman, M. A., Chouduri, M. A. U., & Islam, M. A. U. (2016). Evaluation of antifungal, hemolytic and cytotoxic potential of ethyl acetate extract of a new marine Streptomyces sp. AIAH-10. Bangladesh Pharmaceutical Journal, 16:19:37–43. https://doi.org/10.3329/bpj.v19i1.29235.

Harborne J. B. 1998. Phenolic compounds in phytochemical methods – a guide to modern techniques of plant analysis. Third edition. Chapman & Hall, New York, pp. 66-74.

Higginbotham, S. J., & Murphy, C. D. (2010). Identification and characterisation of a Streptomyces sp. isolate exhibiting activity against methicillin-resistant Staphylococcus aureus. Microbiological research, 165(1), 82–86. https://doi.org/10.1016/j.micres.2008.12.004.

Jakubiec-Krzesniak, K., Rajnisz-Mateusiak, A., Guspiel, A., Ziemska, J., & Solecka, J. (2018). Secondary Metabolites of Actinomycetes and their Antibacterial, Antifungal and Antiviral Properties. Polish Journal of Microbiology, 67(3), 259–272. https://doi.org/10.21307/pjm-2018-048.

Kekuda, T. R. P., Shobha, K. S., & Onkarappa, R. (2010). Fascinating diversity and potent biological activities of actinomycete metabolites. Journal of Pharmacy Research, 3(2):250-256.

Khanna I. (2012). Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug discovery today, 17(19-20), 1088–1102. https://doi.org/10.1016/j.drudis.2012.05.007.

Lee, D. R., Lee, S. K., Choi, B. K., Cheng, J., Lee, Y. S., Yang, S. H., & Suh, J. W. (2014). Antioxidant activity and free radical scavenging activities of Streptomyces sp. strain MJM 10778. Asian Pacific journal of tropical medicine, 7(12), 962–967. https://doi.org/10.1016/S1995-7645(14)60170-X.

Leouifoudi, I., Harnafi, H., & Zyad, A. (2015). Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities. Advances in pharmacological sciences, 2015, 714138. https://doi.org/10.1155/2015/714138.

Lertcanawanichakul, M., Pondet, K., & Kwantep, J. (2015). In vitro antimicrobial and antioxidant activities of bioactive compounds (secondary metabolites) extracted from Streptomyces lydicus A2. Journal of Applied Pharmaceutical Science, 5(2): 017–021. https://doi.org/10.7324/JAPS.2015.50204.

Lima, S. M., Melo, J. G., Militão, G. C., Lima, G. M., Do Carmo A. Lima, M., Aguiar, J. S., Araújo, R. M., Braz-Filho, R., Marchand, P., Araújo, J. M., & Silva, T. G. (2017). Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil). Applied microbiology and biotechnology, 101(2), 711–723. https://doi.org/10.1007/s00253-016-7886-9.

Liu, C. P., Tsai, W. J., Lin, Y. L., Liao, J. F., Chen, C. F., & Kuo, Y. C. (2004). The extracts from Nelumbo nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells. Life Sciences, 75(6), 699–716. https://doi.org/10.1016/j.lfs.2004.01.019.

Luo, J., Wang, Y., Tang, S., Liang, J., Lin, W., & Luo, L. (2013). Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PloS One, 8(10), e76444. https://doi.org/10.1371/journal.pone.0076444.

Ma, X., Wu, H., Liu, L., Yao, Q., Wang, S., Zhan, R., Xing, S., & Zhou, Y. (2011). Polyphenolic compounds and antioxidant pro perties in mango fruits. Scientia Horticulturae, 129(1), 102–107. https://doi.org/10.1016/j.scienta.2011.03.015.

Mahmoud, T. S., Marques, M. R., Pessoa, C. O., Lotufo, L. V. C., Magalhães, H. I. F., Moraes, M. O., Lima, D. P., Tininis, A. G., & Oliveira, J. E. (2011). In vitro cytotoxic activity of brazilian middle west plant extracts. Brazilian Journal of Pharmacognosy, 21(3):456–464. https://doi.org/10.1590/S0102-695X2011005000061.

Naine, S. J., Devi, C. S, & Mohanasrinivasan, V. B. V. (2015). Antimicrobial, antioxidant and cytotoxic activity of marine Streptomyces parvulus VITJS11 crude extract. Brazilian Archives of Biology and Technology, 58:198–207. https://doi.org/10.1590/S1516-8913201400173.

Nascimento, T. C., Jos, E. G. G., Nascimento, P. L. A., Da Silva, A. C., Medeiros, E. V., Falcão, R. E., Teixeira, M. F. S., Souza Lima, G. M., Porto, A. L. F., & Moreiara, K. A. (2014). Partial biochemical characterization of a thermostable chitinase produced by Streptomyces owasiensis isolated from lichens of the Amazonian region. African Journal of Microbiology Research, 8:2830–4. https://doi.org/10.5897/AJMR2014.6822.

Nguyen, H. T., Pokhrel, A. R., Nguyen, C. T., Pham, V., Dhakal, D., Lim, H. N., Jung, H. J., Kim, T. S., Yamaguchi, T., & Sohng, J. K. (2020). Streptomyces sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Scientific reports, 10(1), 1756. https://doi.org/10.1038/s41598-020-58623-1.

Niladevi, K. N., Sukumaran, R. K., & Prema, P. (2007). Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. Journal of industrial microbiology & biotechnology, 34(10), 665–674. https://doi.org/10.1007/s10295-007-0239-z.

Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Podolak, I., Galanty, A., & Sobolewska, D. (2010). Saponins as cytotoxic agents: a review. Phytochemistry reviews: proceedings of the Phytochemical Society of Europe, 9(3), 425–474. https://doi.org/10.1007/s11101-010-9183-z.

Pisoschi, A. M., Cimpeanu, C., & Predoi, G. (2015). electrochemical methods for total antioxidant capacity and its main contributors determination: A review. Open Chemistry, 13:824-856. https://doi.org/10.1515/chem-2015-0099.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology & medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3.

Saurav, K., & Kannabiran, K. (2012). Cytotoxicity and antioxidant activity of 5-(2,4-dimethylbenzyl)pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. Saudi Journal of Biological Sciences, 19(1), 81–86. https://doi.org/10.1016/j.sjbs.2011.07.003.

Savaş, L., Duran, N., Savaş, N., Önlen, Y., & Ocak, S. (2005). The prevalence and resistance patterns of Pseudomonas aeruginosa in intensive care units in a university hospital. Turkish Journal of Medical Sciences, 35:317–22.

Scott, C. W., Peters, M. F., & Dragan, Y. P. (2013). Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology letters, 219(1), 49–58. https://doi.org/10.1016/j.toxlet.2013.02.020.

Sharma, M., & Manhas, R. K. (2020). Purification and characterization of salvianolic acid B from Streptomyces sp. M4 possessing antifungal activity against fungal phytopathogens. Microbiological research, 237, 126478. https://doi.org/10.1016/j.micres.2020.126478.

Sosovele, M. E., Hosea, K. M., & Lyimo, T. J. (2012). In vitro antimicrobial activity of extracts from marine Streptomyces isolated from mangrove sediments of Tanzania. Journal of Biochemical Technology, 3:431–435.

Suffnes, M., & Pezzuto, J. (1990). Assays related to cancer drug discovery. In: Hostettmann K (ed.), Methods in Plant Biochemistry. Assays Bioactivity, London: Academic Press; p. 71–133.

Rashad, F. M., Fathy, H. M., El-Zayat, A. S., & Elghonaimy, A. M. (2015). Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiological research, 175, 34–47. https://doi.org/10.1016/j.micres.2015.03.002.

Tan, L. T., Ser, H. L., Yin, W. F., Chan, K. G., Lee, L. H., & Goh, B. H. (2015). Investigation of Antioxidative and Anticancer Potentials of Streptomyces sp. MUM256 Isolated from Malaysia Mangrove Soil. Frontiers in microbiology, 6, 1316. https://doi.org/10.3389/fmicb.2015.01316.

Tan, L. T., Chan, K. G., Chan, C. K., Khan, T. M., Lee, L. H., & Goh, B. H. (2018). Antioxidative Potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil. Biomed Research International, 2018, 4823126. https://doi.org/10.1155/2018/4823126.

Vasievich, E. A., & Huang, L. (2011). The suppressive tumor microenvironment: a challenge in cancer immunotherapy. Molecular pharmaceutics, 8(3), 635–641. https://doi.org/10.1021/mp1004228.

Weng, A., Thakur, Melzig, & Fuchs. (2011). Chemistry and pharmacology of saponins: special focus on cytotoxic properties. Botanics Targets and Therapy, 2011(1):19-29. https://doi.org/10.2147/BTAT.S17261.

Yoshimoto, Y., Sawa, T., Kinoshita, N., Homma, Y., Hamada, M., Takeuchi, T., & Imoto, M. (2000). MK800-62F1, a new inhibitor of apoptotic cell death, from Streptomyces diastatochromogenes MK800-62F1. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. The Journal of antibiotics, 53(6), 569–574. https://doi.org/10.7164/antibiotics.53.569.

Zhang, Z., & Li, S. (2007). Cytotoxic triterpenoid saponins from the fruits of Aesculus pavia L. Phytochemistry, 68(15), 2075–2086. https://doi.org/10.1016/j.phytochem.2007.05.020.

Descargas

Publicado

14/08/2021

Cómo citar

LIMA, S. M. A. .; PEREIRA, P. S.; SILVA, B. I. M. da .; RIBEIRO, N. E. .; BORBA, E. F. de O. .; OLIVEIRA TINTINO, C. D. de M. .; RANDAU, K. P. .; COUTINHO, H. D. M. .; LIMA-GOMES, G. M. de S. .; CHÁVEZ-GONZÁLEZ, M. L.; MARTINEZ-MEDINA, G. A.; CARNEIRO-DA- CUNHA, M. das G.; GONÇALVES SILVA, T. Actividades antioxidante, antimicrobiana y citotóxica de los metabolitos secundarios de Streptomyces sp. aislado de la región Amazónica-Brasileña. Research, Society and Development, [S. l.], v. 10, n. 10, p. e366101018974, 2021. DOI: 10.33448/rsd-v10i10.18974. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18974. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias de la salud