Actividades antioxidante, antimicrobiana y citotóxica de los metabolitos secundarios de Streptomyces sp. aislado de la región Amazónica-Brasileña
DOI:
https://doi.org/10.33448/rsd-v10i10.18974Palabras clave:
Actinobacteria; Anticancer; Compuestos fenólicos; Citotoxicidad.Resumen
Las bacterias del género Streptomyces son una fuente prometedora de productos biológicamente activos, con aplicaciones en medicina, industria y agricultura. Por lo tanto, el objetivo de este trabajo fue evaluar las actividades citotóxicas, antioxidantes y antimicrobianas de los extractos y fracciones semipurificadas de Streptomyces spp. aislada de la rizósfera de Paullinia cupana, Amazonas-Brasil. Para ello, se realizó un estudio bioguiado de la actividad citotóxica con extracto metanólico de Streptomyces sp. El extracto ACTMS-12H UFPEDA 3405 (EMeOH-12H) fue fraccionado con n-hexano, acetato de etilo y 2-butanol. La actividad antioxidante fue analizada a través de los métodos de DPPH, ABTS y fosfomolibdeno, mientras que la actividad antimicrobiana fue investigada por el método de microdilución para determinar la concentración minima inhibitoria (MIC) contra especies de bacterias y levaduras. En la prueba de citotoxicidad la fase butanólica (FbuOH-12H) presentó una IC50 de 1.1 µg/mL contra MOLT-4, con muerte celular probablemente por apoptosis, pero no causó citotoxicidad en las células mononucleares de sangre periférica (PBMC) o en eritrocitos humanos, La prospección química detectó la presencia de saponinas y azúcares reductores en la fracción de 2-butanol (FBuOH-12H), que pueden estar relacionados con la citotoxicidad. Sobre la actividad antioxidante por ABTS, la fracción de acetato de etilo (FAcOEt-12H) mostró una capacidad antioxidante de 1161.7 ± 0.04 µM de Trolox/g de extracto, indicando una expresiva reactividad de la fase con este radical. Las fases acuosas (de los extractos de hexano, acetato de etilo y metanol) fueron activas en todos los microorganismos probados, excepto E. faecalis.
Citas
Ahmed, S. A., Gogal, R. M., Jr, & Walsh, J. E. (1994). A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. Journal of immunological methods, 170(2), 211–224. https://doi.org/10.1016/0022-1759(94)90396-4.
Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature protocols, 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102.
Alley, M. C., Scudiero, D. A., Monks, A., Hursey, M. L., Czerwinski, M. J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R. H., & Boyd, M. R. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer research, 48(3), 589–601.
Anibou, M., Chait, A., Zyad, A., Taourirt, M., Ouhdouch, Y., & Benherref, A. (2008). Actinomycetes from Moroccan habitats: isolation and screening for cytotoxic activities. World Journal of Microbiology and Biotechnology, 24:2019–2025. https://doi.org/10.1007/s11274-008-9705-7.
Bachran, C., Bachran, S., Sutherland, M., Bachran, D., & Fuchs, H. (2008). Saponins in tumor therapy. Mini reviews in medicinal chemistry, 8(6), 575–584. https://doi.org/10.2174/138955708784534445.
Balachandran, C., Sangeetha, B., Duraipandiyan, V., Raj, M. K., Ignacimuthu, S., Al-Dhabi, N. A., Balakrishna, K., Parthasarathy, K., Arulmozhi, N. M., & Arasu, M. V. (2014). A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway. Chemico-biological interactions, 224:24–35. https://doi.org/10.1016/j.cbi.2014.09.019.
Balachandran, C., Duraipandiyan.V., Arun, Y., Sangeetha, B., Emi, N., Al-Dhabi, N. A., et al. (2016). Isolation and characterization of 2-hydroxy-9,10-anthraquinone from Streptomyces olivochromogenes (ERINLG-261) with antimicrobial and antiproliferative properties. Revista Brasileira de Farmacognosia, 26:285–95. https://doi.org/10.1016/j.bjp.2015.12.003.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.
Choi, H. J., Kim, D.W., Choi, Y. W., Lee, Y.G., Lee, Y-I., Jeong, Y. K., & Woo, H. J. (2012). Broad-spectrum in vitro antimicrobial activities of Streptomyces sp. strain BCNU 1001. Biotechnology and Bioprocess Engineering, 17:576–83. https://doi.org/10.1007/s12257-011-0151-2.
Clinical and Laboratory Standards Institute - CLSI. (2008). M38-A2 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. 2nd ed. USA.
Clinical and Laboratory Standards Institute - CLSI. (2017). M100 Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. USA.
Costa-Lotufo, L. V., Cunha, G. M., Farias, P. A., Viana, G. S., Cunha, K. M., Pessoa, C., Moraes, M. O., Silveira, E. R., Gramosa, N. V., & Rao, V. S. (2002). The cytotoxic and embryotoxic effects of kaurenoic acid, a diterpene isolated from Copaifera langsdorffii oleo-resin. Toxicon: official journal of the International Society on Toxinology, 40(8), 1231–1234. https://doi.org/10.1016/s0041-0101(02)00128-9.
Creixell, M., & Peppas, N. A. (2012). Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano today, 7(4), 367–379. https://doi.org/10.1016/j.nantod.2012.06.013.
de Almeida, C., Brito, S. A., de Santana, T. I., Costa, H., de Carvalho Júnior, C., da Silva, M. V., de Almeida, L. L., Rolim, L. A., Dos Santos, V. L., Wanderley, A. G., & da Silva, T. G. (2017). Spondias purpurea L. (Anacardiaceae): Antioxidant and Antiulcer Activities of the Leaf Hexane Extract. Oxidative medicine and cellular longevity, 2017, 6593073. https://doi.org/10.1155/2017/6593073
Ellaiah, P, Ramana, T., Raju, K., Sujatha, P., & Sankar, A. U. (2004). Investigations on marine actinomycetes from Bay of Bengal near Kakinada coast of Andhra Pradesh. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 6:53–6.
Fuchs, H., Bachran, D., Panjideh, H., Schellmann, N., Weng, A., Melzig, M. F., Sutherland, M., & Bachran, C. (2009). Saponins as tool for improved targeted tumor therapies. Current drug targets, 10(2), 140–151. https://doi.org/10.2174/138945009787354584.
Genuário, D. B., Vaz, M. G. M. V., Santos, S. N., Kavamura, V. N., & Melo, I. S. (2019). Cyanobacteria From Brazilian Extreme Environments. Microbial Diversity in the Genomic Era, 265–284. https://doi.org/10.1016/b978-0-12-814849-5.00016-2.
Gupta D. (2015). Methods for determination of antioxidant capacity: A review. International Journal of Pharmaceutical Sciences and Research, 6:546–66. https://doi.org/10.13040/IJPSR.0975-8232.6(2).546-66.
Haque, M. A., Sarker, A. K., Rahman, M. A., Chouduri, M. A. U., & Islam, M. A. U. (2016). Evaluation of antifungal, hemolytic and cytotoxic potential of ethyl acetate extract of a new marine Streptomyces sp. AIAH-10. Bangladesh Pharmaceutical Journal, 16:19:37–43. https://doi.org/10.3329/bpj.v19i1.29235.
Harborne J. B. 1998. Phenolic compounds in phytochemical methods – a guide to modern techniques of plant analysis. Third edition. Chapman & Hall, New York, pp. 66-74.
Higginbotham, S. J., & Murphy, C. D. (2010). Identification and characterisation of a Streptomyces sp. isolate exhibiting activity against methicillin-resistant Staphylococcus aureus. Microbiological research, 165(1), 82–86. https://doi.org/10.1016/j.micres.2008.12.004.
Jakubiec-Krzesniak, K., Rajnisz-Mateusiak, A., Guspiel, A., Ziemska, J., & Solecka, J. (2018). Secondary Metabolites of Actinomycetes and their Antibacterial, Antifungal and Antiviral Properties. Polish Journal of Microbiology, 67(3), 259–272. https://doi.org/10.21307/pjm-2018-048.
Kekuda, T. R. P., Shobha, K. S., & Onkarappa, R. (2010). Fascinating diversity and potent biological activities of actinomycete metabolites. Journal of Pharmacy Research, 3(2):250-256.
Khanna I. (2012). Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug discovery today, 17(19-20), 1088–1102. https://doi.org/10.1016/j.drudis.2012.05.007.
Lee, D. R., Lee, S. K., Choi, B. K., Cheng, J., Lee, Y. S., Yang, S. H., & Suh, J. W. (2014). Antioxidant activity and free radical scavenging activities of Streptomyces sp. strain MJM 10778. Asian Pacific journal of tropical medicine, 7(12), 962–967. https://doi.org/10.1016/S1995-7645(14)60170-X.
Leouifoudi, I., Harnafi, H., & Zyad, A. (2015). Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities. Advances in pharmacological sciences, 2015, 714138. https://doi.org/10.1155/2015/714138.
Lertcanawanichakul, M., Pondet, K., & Kwantep, J. (2015). In vitro antimicrobial and antioxidant activities of bioactive compounds (secondary metabolites) extracted from Streptomyces lydicus A2. Journal of Applied Pharmaceutical Science, 5(2): 017–021. https://doi.org/10.7324/JAPS.2015.50204.
Lima, S. M., Melo, J. G., Militão, G. C., Lima, G. M., Do Carmo A. Lima, M., Aguiar, J. S., Araújo, R. M., Braz-Filho, R., Marchand, P., Araújo, J. M., & Silva, T. G. (2017). Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil). Applied microbiology and biotechnology, 101(2), 711–723. https://doi.org/10.1007/s00253-016-7886-9.
Liu, C. P., Tsai, W. J., Lin, Y. L., Liao, J. F., Chen, C. F., & Kuo, Y. C. (2004). The extracts from Nelumbo nucifera suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells. Life Sciences, 75(6), 699–716. https://doi.org/10.1016/j.lfs.2004.01.019.
Luo, J., Wang, Y., Tang, S., Liang, J., Lin, W., & Luo, L. (2013). Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PloS One, 8(10), e76444. https://doi.org/10.1371/journal.pone.0076444.
Ma, X., Wu, H., Liu, L., Yao, Q., Wang, S., Zhan, R., Xing, S., & Zhou, Y. (2011). Polyphenolic compounds and antioxidant pro perties in mango fruits. Scientia Horticulturae, 129(1), 102–107. https://doi.org/10.1016/j.scienta.2011.03.015.
Mahmoud, T. S., Marques, M. R., Pessoa, C. O., Lotufo, L. V. C., Magalhães, H. I. F., Moraes, M. O., Lima, D. P., Tininis, A. G., & Oliveira, J. E. (2011). In vitro cytotoxic activity of brazilian middle west plant extracts. Brazilian Journal of Pharmacognosy, 21(3):456–464. https://doi.org/10.1590/S0102-695X2011005000061.
Naine, S. J., Devi, C. S, & Mohanasrinivasan, V. B. V. (2015). Antimicrobial, antioxidant and cytotoxic activity of marine Streptomyces parvulus VITJS11 crude extract. Brazilian Archives of Biology and Technology, 58:198–207. https://doi.org/10.1590/S1516-8913201400173.
Nascimento, T. C., Jos, E. G. G., Nascimento, P. L. A., Da Silva, A. C., Medeiros, E. V., Falcão, R. E., Teixeira, M. F. S., Souza Lima, G. M., Porto, A. L. F., & Moreiara, K. A. (2014). Partial biochemical characterization of a thermostable chitinase produced by Streptomyces owasiensis isolated from lichens of the Amazonian region. African Journal of Microbiology Research, 8:2830–4. https://doi.org/10.5897/AJMR2014.6822.
Nguyen, H. T., Pokhrel, A. R., Nguyen, C. T., Pham, V., Dhakal, D., Lim, H. N., Jung, H. J., Kim, T. S., Yamaguchi, T., & Sohng, J. K. (2020). Streptomyces sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Scientific reports, 10(1), 1756. https://doi.org/10.1038/s41598-020-58623-1.
Niladevi, K. N., Sukumaran, R. K., & Prema, P. (2007). Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. Journal of industrial microbiology & biotechnology, 34(10), 665–674. https://doi.org/10.1007/s10295-007-0239-z.
Pereira, A. S. et al. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Podolak, I., Galanty, A., & Sobolewska, D. (2010). Saponins as cytotoxic agents: a review. Phytochemistry reviews: proceedings of the Phytochemical Society of Europe, 9(3), 425–474. https://doi.org/10.1007/s11101-010-9183-z.
Pisoschi, A. M., Cimpeanu, C., & Predoi, G. (2015). electrochemical methods for total antioxidant capacity and its main contributors determination: A review. Open Chemistry, 13:824-856. https://doi.org/10.1515/chem-2015-0099.
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology & medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3.
Saurav, K., & Kannabiran, K. (2012). Cytotoxicity and antioxidant activity of 5-(2,4-dimethylbenzyl)pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. Saudi Journal of Biological Sciences, 19(1), 81–86. https://doi.org/10.1016/j.sjbs.2011.07.003.
Savaş, L., Duran, N., Savaş, N., Önlen, Y., & Ocak, S. (2005). The prevalence and resistance patterns of Pseudomonas aeruginosa in intensive care units in a university hospital. Turkish Journal of Medical Sciences, 35:317–22.
Scott, C. W., Peters, M. F., & Dragan, Y. P. (2013). Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicology letters, 219(1), 49–58. https://doi.org/10.1016/j.toxlet.2013.02.020.
Sharma, M., & Manhas, R. K. (2020). Purification and characterization of salvianolic acid B from Streptomyces sp. M4 possessing antifungal activity against fungal phytopathogens. Microbiological research, 237, 126478. https://doi.org/10.1016/j.micres.2020.126478.
Sosovele, M. E., Hosea, K. M., & Lyimo, T. J. (2012). In vitro antimicrobial activity of extracts from marine Streptomyces isolated from mangrove sediments of Tanzania. Journal of Biochemical Technology, 3:431–435.
Suffnes, M., & Pezzuto, J. (1990). Assays related to cancer drug discovery. In: Hostettmann K (ed.), Methods in Plant Biochemistry. Assays Bioactivity, London: Academic Press; p. 71–133.
Rashad, F. M., Fathy, H. M., El-Zayat, A. S., & Elghonaimy, A. M. (2015). Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiological research, 175, 34–47. https://doi.org/10.1016/j.micres.2015.03.002.
Tan, L. T., Ser, H. L., Yin, W. F., Chan, K. G., Lee, L. H., & Goh, B. H. (2015). Investigation of Antioxidative and Anticancer Potentials of Streptomyces sp. MUM256 Isolated from Malaysia Mangrove Soil. Frontiers in microbiology, 6, 1316. https://doi.org/10.3389/fmicb.2015.01316.
Tan, L. T., Chan, K. G., Chan, C. K., Khan, T. M., Lee, L. H., & Goh, B. H. (2018). Antioxidative Potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil. Biomed Research International, 2018, 4823126. https://doi.org/10.1155/2018/4823126.
Vasievich, E. A., & Huang, L. (2011). The suppressive tumor microenvironment: a challenge in cancer immunotherapy. Molecular pharmaceutics, 8(3), 635–641. https://doi.org/10.1021/mp1004228.
Weng, A., Thakur, Melzig, & Fuchs. (2011). Chemistry and pharmacology of saponins: special focus on cytotoxic properties. Botanics Targets and Therapy, 2011(1):19-29. https://doi.org/10.2147/BTAT.S17261.
Yoshimoto, Y., Sawa, T., Kinoshita, N., Homma, Y., Hamada, M., Takeuchi, T., & Imoto, M. (2000). MK800-62F1, a new inhibitor of apoptotic cell death, from Streptomyces diastatochromogenes MK800-62F1. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. The Journal of antibiotics, 53(6), 569–574. https://doi.org/10.7164/antibiotics.53.569.
Zhang, Z., & Li, S. (2007). Cytotoxic triterpenoid saponins from the fruits of Aesculus pavia L. Phytochemistry, 68(15), 2075–2086. https://doi.org/10.1016/j.phytochem.2007.05.020.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Sandrine Maria Arruda Lima; Pedro Silvino Pereira; Bruno Iraquitan Miranda da Silva; Natalie Emanuelle Ribeiro; Elizabeth Fernanda de Oliveira Borba; Cícera Datiane de Morais Oliveira Tintino; Karina Perrelli Randau; Henrique Douglas Melo Coutinho; Gláucia Manoella de Souza Lima-Gomes; Mónica Lizeth Chávez-González; Glória Alicia Martinez-Medina; Maria das Graças Carneiro-da- Cunha; Teresinha Gonçalves Silva

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.