Eficacia de la desinfección de superfícies inanimadas contra coronavirus: una revisión sistemática

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.19100

Palabras clave:

SARS-CoV-2; Desinfectantes; Superficie Inanimada; Agente Biocida; Coronavirus.

Resumen

Los coronavirus humanos tienden a persistir en superficies secas durante 2 a 9 días, lo que requiere protocolos de prevención y control de infecciones con agentes biocidas. Esta revisión sistemática tuvo como objetivo responder la siguiente pregunta focalizada: ¿Cuál es la efectividad de los desinfectantes en superficies inanimadas contra el coronavirus? Se utilizó el acrónimo “PICOS” para representar la elegibilidad de los estudios: P = población (superficies inanimadas contaminadas con coronavirus); I = intervención (desinfectantes); C = comparación (estudios con cualquier tipo de control o estudios que utilizaron un grupo de control); O = resultados (inactivación del coronavirus en diferentes tipos de superficies inanimadas); y S = diseño del estudio (estudios in vitro). Las siete bases de datos utilizadas fueron PubMed / Medline, EMBASE, Literatura de Ciencias de la Salud de América Latina y el Caribe (LILACS), Web of Science, Scopus, LIVIVO y Cochrane Library. La literatura gris también se utilizó como fuente de información a través de Google Scholar, ProQuest y Open Gray. La búsqueda resultó en 6.639 referencias y se utilizaron 21 artículos en el análisis cualitativo. Los resultados mostraron que todas las soluciones biocidas estudiadas proporcionaron algún grado de descontaminación e inactivación del coronavirus, dependiendo de la concentración de la solución desinfectante, el tiempo de exposición del producto al patógeno y el tipo de superficie.

Citas

Akram, M. Z. (2020). Inanimate surfaces as potential source of 2019-nCoV spread and their disinfection with biocidal agents. VirusDisease. 10.1007/s13337-020-00603-0

Ansaldi, F., Banfi, F., Morelli, P., Valle, L., Durando, P., Sticchi, L., & Crovari, P. (2004). SARS-CoV, influenza A and syncitial respiratory virus resistance against common disinfectants and ultraviolet irradiation. Journal of Preventive Medicine and Hygiene, 45(1-2), 5-8.

Bedell, K., Buchaklian, A. H., & Perlman, S. (2016). Efficacy of an Automated Multiple Emitter Whole-Room Ultraviolet-C Disinfection System Against Coronaviruses MHV and MERS-CoV. Infect Control Hosp Epidemiol, 37(5), 598-599. 10.1017/ice.2015.348

Blanchard, E. L., Lawrence, J. D., Noble, J. A., Xu, M., Joo, T., Ng, N. L., & Finn, M. G. (2020). Enveloped Virus Inactivation on Personal Protective Equipment by Exposure to Ozone. medRxiv. 10.1101/2020.05.23.20111435

Cadnum, J. L., Jencson, A. L., Livingston, S. H., Li, D. F., Redmond, S. N., Pearlmutter, B., & Donskey, C. J. (2020). Evaluation of an electrostatic spray disinfectant technology for rapid decontamination of portable equipment and large open areas in the era of SARS-CoV-2. Am J Infect Control, 48(8), 951-954. 10.1016/j.ajic.2020.06.002

Cadnum, J. L., Li, D. F., Jones, L. D., Redmond, S. N., Pearlmutter, B., Wilson, B. M., & Donskey, C. J. (2020). Evaluation of Ultraviolet-C Light for Rapid Decontamination of Airport Security Bins in the Era of SARS-CoV-2. Pathog Immun, 5(1), 133-142. 10.20411/pai.v5i1.373

Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H.-L., Chan, M. C. W., & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe, 1(1), e10. 10.1016/s2666-5247(20)30003-3

Cirrincione, L., Plescia, F., Ledda, C., Rapisarda, V., Martorana, D., Moldovan, R. E., & Cannizzaro, E. (2020). COVID-19 Pandemic: Prevention and Protection Measures to Be Adopted at the Workplace. Sustainability, 12(9). 10.3390/su12093603

Darnell, M. E., Subbarao, K., Feinstone, S. M., & Taylor, D. R. (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Methods, 121(1), 85-91. 10.1016/j.jviromet.2004.06.006

De Andrade, F. P. D. B. P., C. (2020). Use of chlorine solutions as disinfectant agents in health units to contain the spread of COVID-19. Journal of Health & Biological Sciences, 8, 1-9. 10.12662/2317-3206jhbs.v8i1.3256.p1-9.2020

Dellanno, C., Vega, Q., & Boesenberg, D. (2009). The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. Am J Infect Control, 37(8), 649-652. 10.1016/j.ajic.2009.03.012

Duan, S. M., Zhao, X. S., Wen, R. F., Huang, J. J., Pi, G. H., Zhang, S. X., & Team, S. R. (2003). Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci, 16(3), 246-255.

Goyal, S. M., Chander, Y., Yezli, S., & Otter, J. A. (2014). Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect, 86(4), 255-259. 10.1016/j.jhin.2014.02.003

Hamzavi, I. H., Lyons, A. B., Kohli, I., Narla, S., Parks-Miller, A., Gelfand, J. M., & Ozog, D. M. (2020). Ultraviolet germicidal irradiation: Possible method for respirator disinfection to facilitate reuse during the COVID-19 pandemic. J Am Acad Dermatol, 82(6), 1511-1512. 10.1016/j.jaad.2020.03.085

Hota, B. (2004). Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis, 39(8), 1182-1189. 10.1086/424667

Hulkower, R. L., Casanova, L. M., Rutala, W. A., Weber, D. J., & Sobsey, M. D. (2011). Inactivation of surrogate coronaviruses on hard surfaces by health care germicides. Am J Infect Control, 39(5), 401-407. 10.1016/j.ajic.2010.08.011

Kampf, G. (2020). Potential role of inanimate surfaces for the spread of coronaviruses and their inactivation with disinfectant agents. Infection Prevention in Practice, 2(2). 10.1016/j.infpip.2020.100044

Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect, 104(3), 246-251. 10.1016/j.jhin.2020.01.022

Kariwa, H., Fujii, N., & Takashima, I. (2006). Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology, 212 Suppl 1, 119-123. 10.1159/000089211

Lai, M. Y., Cheng, P. K., & Lim, W. W. (2005). Survival of severe acute respiratory syndrome coronavirus. Clin Infect Dis, 41(7), e67-71. 10.1086/433186

Liao, L., Xiao, W., Zhao, M., Yu, X., Wang, H., Wang, Q., & Cui, Y. (2020). Can N95 Respirators Be Reused after Disinfection? How Many Times? ACS nano. 10.1021/acsnano.0c03597

Ludwig-Begall, L. F., Wielick, C., Dams, L., Nauwynck, H., Demeuldre, P.-F., Napp, A., & Thiry, E. (2020). Decontamination of face masks and filtering facepiece respirators via ultraviolet germicidal irradiation, hydrogen peroxide vaporisation, and use of dry heat inactivates an infectious SARS-CoV-2 surrogate virus. medRxiv preprint. 10.1101/2020.06.02.20119834

Molina, J. L., & Abad-Corpa, E. (2020). Desinfectantes Y AntisÉpticos Frente Al Coronavirus: SÍntesis De Evidencias Y Recomendaciones. Enfermería Clínica. 10.1016/j.enfcli.2020.05.013

Organization, W. H. (2014). Infection prevention and control of epidemic - and pandemic -prone acute respiratory infections in health care. WHO Guidelines, 45.

Peng, X., Xu, X., Li, Y., Cheng, L., Zhou, X., & Ren, B. (2020). Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci, 12(1), 9. 10.1038/s41368-020-0075-9

Rabenau, H. F., Kampf, G., Cinatl, J., & Doerr, H. W. (2005). Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect, 61(2), 107-111. 10.1016/j.jhin.2004.12.023

Ratnesar-Shumate, S., Williams, G., Green, B., Krause, M., Holland, B., Wood, S., & Dabisch, P. (2020). Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J Infect Dis, 222(2), 214-222. 10.1093/infdis/jiaa274

Simmons, S., Carrion, R., Alfson, K., Staples, H., Jinadatha, C., Jarvis, W., & Stibich, M. (2020). Disinfection effect of pulsed xenon ultraviolet irradiation on SARS-CoV-2 and implications for environmental risk of COVID-19 transmission. medRxiv, 2020.2005.2006.20093658. 10.1101/2020.05.06.20093658

Sizun, J., Yu, M. W., & Talbot, P. J. (2000). Survival of human coronaviruses 229E and OC43 in suspension and after drying onsurfaces: a possible source ofhospital-acquired infections. J Hosp Infect, 46(1), 55-60. 10.1053/jhin.2000.0795

Tseng, C. C., & Li, C. S. (2007). Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. J Occup Environ Hyg, 4(6), 400-405. 10.1080/15459620701329012

Yen, M. Y., Schwartz, J., King, C. C., Lee, C. M., Hsueh, P. R., Society of Taiwan Long-term Care Infection, P., & Control. (2020). Recommendations for protecting against and mitigating the COVID-19 pandemic in long-term care facilities. J Microbiol Immunol Infect, 53(3), 447-453. 10.1016/j.jmii.2020.04.003

Descargas

Publicado

15/08/2021

Cómo citar

BASSO, I. B. .; SCHRODER, A. G. D. .; SANTOS, R. S.; RAVAZZI, G. C. .; GONÇALVES, F. M. .; STECHMAN-NETO, J.; ZEIGELBOIM, B. S. .; POVH, B.; ARAUJO, C. M. de .; GUARIZA-FILHO, O. Eficacia de la desinfección de superfícies inanimadas contra coronavirus: una revisión sistemática. Research, Society and Development, [S. l.], v. 10, n. 10, p. e452101019100, 2021. DOI: 10.33448/rsd-v10i10.19100. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19100. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud