Efficacy of disinfecting inanimate surfaces against coronavirus: a systematic review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.19100

Keywords:

SARS-CoV-2; Disinfectants; Inanimate Surface; Biocidal Agent; Coronavirus.

Abstract

Human coronaviruses tend to persist on dry surfaces for 2 to 9 days, necessitating infection control and prevention protocols using biocidal agents. This systematic review aimed to answer the following focused question: What is the effectiveness of disinfectants on inanimate surfaces against the coronavirus? The acronym “PICOS” was used to represent the eligibility of studies: P = population (inanimate surfaces contaminated with coronavirus); I = intervention (disinfectants); C = comparison (studies with any type of control or studies that used a control group); O = outcomes (coronavirus inactivation on different types of inanimate surfaces); and S = study design (in vitro studies). The seven databases used were PubMed/Medline, EMBASE, Latin American and Caribbean Literature on Health Sciences (LILACS), Web of Science, Scopus, LIVIVO, and Cochrane Library. The gray literature was also used as an information source through Google Scholar, ProQuest, and Open Gray. The search resulted in 6639 references, and 21 articles were used in the qualitative analysis. The results showed that all studied biocidal solutions provided some degree of decontamination and inactivation of the coronavirus, depending on the concentration of the disinfectant solution, the time of exposure of the product to the pathogen and the type of surface.

References

Akram, M. Z. (2020). Inanimate surfaces as potential source of 2019-nCoV spread and their disinfection with biocidal agents. VirusDisease. 10.1007/s13337-020-00603-0

Ansaldi, F., Banfi, F., Morelli, P., Valle, L., Durando, P., Sticchi, L., & Crovari, P. (2004). SARS-CoV, influenza A and syncitial respiratory virus resistance against common disinfectants and ultraviolet irradiation. Journal of Preventive Medicine and Hygiene, 45(1-2), 5-8.

Bedell, K., Buchaklian, A. H., & Perlman, S. (2016). Efficacy of an Automated Multiple Emitter Whole-Room Ultraviolet-C Disinfection System Against Coronaviruses MHV and MERS-CoV. Infect Control Hosp Epidemiol, 37(5), 598-599. 10.1017/ice.2015.348

Blanchard, E. L., Lawrence, J. D., Noble, J. A., Xu, M., Joo, T., Ng, N. L., & Finn, M. G. (2020). Enveloped Virus Inactivation on Personal Protective Equipment by Exposure to Ozone. medRxiv. 10.1101/2020.05.23.20111435

Cadnum, J. L., Jencson, A. L., Livingston, S. H., Li, D. F., Redmond, S. N., Pearlmutter, B., & Donskey, C. J. (2020). Evaluation of an electrostatic spray disinfectant technology for rapid decontamination of portable equipment and large open areas in the era of SARS-CoV-2. Am J Infect Control, 48(8), 951-954. 10.1016/j.ajic.2020.06.002

Cadnum, J. L., Li, D. F., Jones, L. D., Redmond, S. N., Pearlmutter, B., Wilson, B. M., & Donskey, C. J. (2020). Evaluation of Ultraviolet-C Light for Rapid Decontamination of Airport Security Bins in the Era of SARS-CoV-2. Pathog Immun, 5(1), 133-142. 10.20411/pai.v5i1.373

Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H.-L., Chan, M. C. W., & Poon, L. L. M. (2020). Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe, 1(1), e10. 10.1016/s2666-5247(20)30003-3

Cirrincione, L., Plescia, F., Ledda, C., Rapisarda, V., Martorana, D., Moldovan, R. E., & Cannizzaro, E. (2020). COVID-19 Pandemic: Prevention and Protection Measures to Be Adopted at the Workplace. Sustainability, 12(9). 10.3390/su12093603

Darnell, M. E., Subbarao, K., Feinstone, S. M., & Taylor, D. R. (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Methods, 121(1), 85-91. 10.1016/j.jviromet.2004.06.006

De Andrade, F. P. D. B. P., C. (2020). Use of chlorine solutions as disinfectant agents in health units to contain the spread of COVID-19. Journal of Health & Biological Sciences, 8, 1-9. 10.12662/2317-3206jhbs.v8i1.3256.p1-9.2020

Dellanno, C., Vega, Q., & Boesenberg, D. (2009). The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. Am J Infect Control, 37(8), 649-652. 10.1016/j.ajic.2009.03.012

Duan, S. M., Zhao, X. S., Wen, R. F., Huang, J. J., Pi, G. H., Zhang, S. X., & Team, S. R. (2003). Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci, 16(3), 246-255.

Goyal, S. M., Chander, Y., Yezli, S., & Otter, J. A. (2014). Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect, 86(4), 255-259. 10.1016/j.jhin.2014.02.003

Hamzavi, I. H., Lyons, A. B., Kohli, I., Narla, S., Parks-Miller, A., Gelfand, J. M., & Ozog, D. M. (2020). Ultraviolet germicidal irradiation: Possible method for respirator disinfection to facilitate reuse during the COVID-19 pandemic. J Am Acad Dermatol, 82(6), 1511-1512. 10.1016/j.jaad.2020.03.085

Hota, B. (2004). Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis, 39(8), 1182-1189. 10.1086/424667

Hulkower, R. L., Casanova, L. M., Rutala, W. A., Weber, D. J., & Sobsey, M. D. (2011). Inactivation of surrogate coronaviruses on hard surfaces by health care germicides. Am J Infect Control, 39(5), 401-407. 10.1016/j.ajic.2010.08.011

Kampf, G. (2020). Potential role of inanimate surfaces for the spread of coronaviruses and their inactivation with disinfectant agents. Infection Prevention in Practice, 2(2). 10.1016/j.infpip.2020.100044

Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect, 104(3), 246-251. 10.1016/j.jhin.2020.01.022

Kariwa, H., Fujii, N., & Takashima, I. (2006). Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology, 212 Suppl 1, 119-123. 10.1159/000089211

Lai, M. Y., Cheng, P. K., & Lim, W. W. (2005). Survival of severe acute respiratory syndrome coronavirus. Clin Infect Dis, 41(7), e67-71. 10.1086/433186

Liao, L., Xiao, W., Zhao, M., Yu, X., Wang, H., Wang, Q., & Cui, Y. (2020). Can N95 Respirators Be Reused after Disinfection? How Many Times? ACS nano. 10.1021/acsnano.0c03597

Ludwig-Begall, L. F., Wielick, C., Dams, L., Nauwynck, H., Demeuldre, P.-F., Napp, A., & Thiry, E. (2020). Decontamination of face masks and filtering facepiece respirators via ultraviolet germicidal irradiation, hydrogen peroxide vaporisation, and use of dry heat inactivates an infectious SARS-CoV-2 surrogate virus. medRxiv preprint. 10.1101/2020.06.02.20119834

Molina, J. L., & Abad-Corpa, E. (2020). Desinfectantes Y AntisÉpticos Frente Al Coronavirus: SÍntesis De Evidencias Y Recomendaciones. Enfermería Clínica. 10.1016/j.enfcli.2020.05.013

Organization, W. H. (2014). Infection prevention and control of epidemic - and pandemic -prone acute respiratory infections in health care. WHO Guidelines, 45.

Peng, X., Xu, X., Li, Y., Cheng, L., Zhou, X., & Ren, B. (2020). Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci, 12(1), 9. 10.1038/s41368-020-0075-9

Rabenau, H. F., Kampf, G., Cinatl, J., & Doerr, H. W. (2005). Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect, 61(2), 107-111. 10.1016/j.jhin.2004.12.023

Ratnesar-Shumate, S., Williams, G., Green, B., Krause, M., Holland, B., Wood, S., & Dabisch, P. (2020). Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J Infect Dis, 222(2), 214-222. 10.1093/infdis/jiaa274

Simmons, S., Carrion, R., Alfson, K., Staples, H., Jinadatha, C., Jarvis, W., & Stibich, M. (2020). Disinfection effect of pulsed xenon ultraviolet irradiation on SARS-CoV-2 and implications for environmental risk of COVID-19 transmission. medRxiv, 2020.2005.2006.20093658. 10.1101/2020.05.06.20093658

Sizun, J., Yu, M. W., & Talbot, P. J. (2000). Survival of human coronaviruses 229E and OC43 in suspension and after drying onsurfaces: a possible source ofhospital-acquired infections. J Hosp Infect, 46(1), 55-60. 10.1053/jhin.2000.0795

Tseng, C. C., & Li, C. S. (2007). Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. J Occup Environ Hyg, 4(6), 400-405. 10.1080/15459620701329012

Yen, M. Y., Schwartz, J., King, C. C., Lee, C. M., Hsueh, P. R., Society of Taiwan Long-term Care Infection, P., & Control. (2020). Recommendations for protecting against and mitigating the COVID-19 pandemic in long-term care facilities. J Microbiol Immunol Infect, 53(3), 447-453. 10.1016/j.jmii.2020.04.003

Downloads

Published

15/08/2021

How to Cite

BASSO, I. B. .; SCHRODER, A. G. D. .; SANTOS, R. S.; RAVAZZI, G. C. .; GONÇALVES, F. M. .; STECHMAN-NETO, J.; ZEIGELBOIM, B. S. .; POVH, B.; ARAUJO, C. M. de .; GUARIZA-FILHO, O. Efficacy of disinfecting inanimate surfaces against coronavirus: a systematic review. Research, Society and Development, [S. l.], v. 10, n. 10, p. e452101019100, 2021. DOI: 10.33448/rsd-v10i10.19100. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19100. Acesso em: 25 apr. 2024.

Issue

Section

Health Sciences