Uso de hormigón permeable con aditivos en el tratamiento de aguas residuales, centrándose en el biocarbón: una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.19111

Palabras clave:

Hormigón poroso; Biochar; Permeabilidad; Porosidad; Propiedades adsorbentes.

Resumen

En los grandes centros urbanos, la constante impermeabilización de carreteras intensifica las inundaciones e inundaciones, provocando innumerables molestias a la población. El uso de hormigón permeable como mecanismo de drenaje de aguas pluviales y residuales ha sido una solución parcial a este tipo de problemas de drenaje, incluyendo la incorporación en su composición de materiales con propiedades adsorbentes dirigidas a mejorar los parámetros físico-químicos y biológicos del agua. Por lo tanto, este artículo tiene como objetivo traer resultados importantes de varios estudios utilizando concreto permeable con adiciones minerales y mostrar los beneficios en las propiedades mecánicas y adsorbentes de este tipo de concreto, con énfasis en el uso de biocarbón. Para ello, la metodología elegida fue realizar una breve revisión bibliográfica, en la que se analizaron las investigaciones completadas disponibles en bases de datos online como Scopus, Science Direct del año 2015 utilizando como descriptores en inglés: “Concrete” Y “Biochar”, “Concrete poroso ”Y“ Biocarbón ”,“ Concreto permeable ”Y“ Biocarbón ”,“ Tratamiento de agua ”Y“ Concreto poroso ”,“ Materiales cementosos ”Y“ Biocarbón ”. Se seleccionaron y especificaron 51 referencias de la siguiente manera: 48 artículos científicos, 1 estándar y 2 capítulos de libro. Se encontró que la adición de minerales adsorbentes y biocarbón en el concreto puede mejorar parámetros de calidad del agua como disminución de turbidez, nitrógeno total (NT), fósforo total (PT), DQO, DBO, entre otros, y promover, en algunos casos, ganancia de resistencia mecánica del hormigón producido.

Citas

Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., & Chen, M (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology. 836-851. https://doi.org/10.1016/j.biortech.2016.05.057

Akhtar, A., & Sarmah, A. K. (2018). Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Science of The Total Environment. 616-617. 408-416. https://doi.org/10.1016/j.scitoten 2017.10.319

Akinyemi, B. A., & Adesina, A (2020). Recent advancements in the use of biochar for cementitious applications: A review. Journal of Building Engineering. 32, 1-13. https://doi.org/10.1016/j.jobe.2020.101705

Banik. C., Lawrinenko, M. Bakshi, S. & Laird, D. A (2018). Impact of Pyrolysis Temperature and Feedstock on Surface Charge and Functional Group Chemistry of Biochars. Journal of Environmental Quality. 47, 452-461. 10.2134/jeq2017.11.0432

Cahya, E. N., Arifi, E., & Haribowo, R (2020). Recycled porous concrete effectiveness for filtration material on wastewater treatment. International Journal of GEOMATE. Geotechnique, Construction Materials and Environment. 18(70), 209 – 214. https://doi.org/10.21660/2020.70.9266

Cha, J. S., et al. (2016). Production and Utilization of Biochar: A Review. Journal of Industrial and Engineering Chemistry. 1-65. http://dx.doi.org/10.1016/j.jiec.2016.06.002

Chandrappa, A. K., & Biligiri, K. (2016). Pervious concrete as a sustainable pavement material–Research findings and future prospects: A state-of-the-art review. Construction and Building Materials. 111. 262-274. https://doi.org/10.1016/j.conbuildmat.2016.02.054

Chandrappa, A. K. & Biligiri, K. P (2016). Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach. Construction and Building Materials. 123. 627-637. https://doi.org/10.1016/j.conbuildmat.2016.07.035

Cosentino, I. Restuccia, L. Ferro, G. A. & Tulliani, J. M (2019). Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement based composites. Theoretical and Applied Fracture Mechanics. 103. 1-10. https://doi.org/10.1016/j.tafmec.2019.102261

Dixit, A. Gupta, S. Pang, S. D. Kua, & H. W (2019). Waste Valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete. Journal of Cleaner Production. 238. 1-14. https://doi.org/10.1016/j.jclepro.2019.117876

Dixit, A. Gupta, S. Pang, S. D. & Kua, H. W (2020). Cement Replacement and Improved Hydration in Ultra-High Performance Concrete Using Biochar. 3rd International Conference on the Application of Superabsorbent Polymers (SAP) and Other New Admixtures Towards Smart Concrete. RILEM. 24. 222-229. https://doi.org/10.1007/978-3-030-33342-3_24

Faisal, G. H., Thaar, A. J. J., & Gasham, S. A. (2020). BOD and COD reduction using porous concrete pavements. Case Studies in Construction Materials. 13. 1-16. https://doi.org/10.1016/j.cscm.2020.e00396

Falliano, D. Domenico, D De. Sciarrone, A. Ricciardi, G. Restuccia, L. Ferro, G. Tulliani, J. M. & Gugliandolo, E (2020). Influence of biochar additions on the fracture behavior of foamed concrete. Frattura ed Integrità Strutturale. 51, 189-198. 10.3221/IGF-ESIS.51.15

Gupta, S., & Kua, H. W. (2020a). Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Construction Building Materials. 159. 107-125. https://doi.org/10.1016/j.conbuildmat.2017.10.095

Gupta, S., Kua, H. W., & Dai, S (2020b). Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Construction Building. Materials. 234. 1-16. https://doi.org/10.1016/j.conbuildmat.2019.117338

Gupta, S., & Kua, H. W. (2017). Biochar as a carbon sequestering construction material in cementitious mortar. Academic Journal of Civil Engineering, 35(2), 563-568. https://doi.org/10.26168/icbbm2017.85

Gwenzi, W., Chaukura, N., Mukome, F. N. D., Machado, S., & Nyamasoka B. (2015). Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. Journal of Environmental Management. 150. 250-261. http://dx.doi.org/10.1016/j.jenvman.2014.11.027

Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. D. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management. 197, 732-749. http://dx.doi.org/10.1016/j.jenvman.2017.03.087

Huggins, T. M., Haeger, A., Biffinger, J. C., & Ren, Z. J (2016). Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Research. 94. 225-232. http://dx.doi.org/10.1016/j.watres.2016.02.059

Inyang, M. & Dickenson, E (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere. 134. 232-240. http://dx.doi.org/10.1016/j.chemosphere.2015.03.072

Jaeel, A. J., & Faisal, G. H. (2018). COD Removal from Synthetic Wastewater Using Pervious Concrete. International Conference on Advances in Sustainable Engineering and Applications (ICASEA). 10.1109 / ICASEA.2018.8370978

Kamali, M., Appels L., Kwon, E. E., Aminabhavi, T. M., & Dewil, R (2021). Biochar in water and wastewater treatment – a sustainability assessment. Chemical Engineering Journal. 420. 1-21. https://doi.org/10.1016/j.cej.2021.129946

Kim, G. M., Jang, J. G., Khalid, H. R., & Lee, H. K. (2017). Water purification characteristics of pervious concrete fabricated with CSA cement and bottom ash aggregates. Construction and Building Materials. 136. 1-8. http://dx.doi.org/10.1016/j.conbuildmat.2017.01.020

Koupai, J. A., Nejad, S. S., Fard, S. M., & Behfarnia, K (2015). Reduction of Urban Storm-Runoff Pollution Using Porous Concrete Containing Iron Slag Adsorbent. Journal of Environmental Engineering. 04015072. 1-7. 10.1061/(ASCE)EE.1943-7870.0001025.

Lee, J. Sarmah, A. K., & Kwon, E. E (2019). Chapter 1 - Production and Formation of Biochar. Biochar from Biomass and Waste. I Biochar Production. p.1-16. https://doi.org/10.1016/B978-0-12-811729-3.00001-7

Li, S. Harris, S.Anandhi, A. & Chen, G (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production. 215. 890-902. https://doi.org/10.1016/j.jclepro.2019.01.106

Liang, X. Cui, S. Li, H. Abdelhady, A. Wang, H. & Zhou, H (2019). Removal effect on stormwater runoff pollution of porous concrete treated with nanometer titanium dioxide. Transportation Research Part D. 73. 34-45. https://doi.org/10.1016/j.trd.2019.06.001

Lyu, H. He, Y. Tang, J. Hecker, M. Liu, Q. Jones, D. Codling, G., & Giesy, J. P (2016). Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environmental Pollution. 218. 1-7. http://dx.doi.org/10.1016/j.envpol.2016.08.014

Maljaee, H., Madadi, R., Paiva, H., Tarello, L., & Ferreira, M (2021). Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Construction and Building Materials. 283. 1-18. https://doi.org/10.1016/j.conbuildmat.2021.122757

Mrad, R. & Chehab, G (2019). Mechanical and Microstructure Properties of Biochar-Based Mortar: An Internal Curing Agent for PCC. Journal Sustainability. 2491. 1-15. 10.3390/su11092491

Nejad, S. S. Koupai, J. A. Fard, S. M. & Behfarnia, K (2017). Treatment of urban storm water using adsorbent porous concrete.Water Management. 1-7. http://dx.doi.org/10.1680/jwama.15.00127

NRMCA-Concrete in Practice-38 (CIP-38), National Ready Mix Concrete Association (NRMCA). 2010.

Praneeth, S. Saavedra, L. Zenga, M. Dubey, B. K. & Sarmah, A. K (2021). Biochar admixtured lightweight, porous and tougher cement mortars: Mechanical, durability and micro computed tomography analysis. Science of The Total Environment. 750. 1-11. https://doi.org/10.1016/j.scitoten 2020.142327

Qambrani, N. A., Rahman, M. M., Won, S., Shim, S. & Ra, C (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews. 79. 255-273. https://doi.org/10.1016/j.rser.2017.05.057

Qin, Y., Pang, X., Tan, K., & Bao, T (2021). Evaluation of pervious concrete performance with pulverized biochar as cement replacement. Cement and Concrete Composites. 119. 1-9. https://doi.org/10.1016/j.cemconcomp.2021.104022

Restuccia, L. et al (2020). Mechanical characterization of different biochar-based cement composites. 1st Virtual Conference on Structural Integrity - VCSI1. Procedia Structural Integrity. 25. 226-233.

Sandoval, G. F.B. et al. (2020). Proposal of maintenance methodology for pervious concrete (PC) after the phenomenon of clogging. 248. p.1-12. https://doi.org/10.1016/j.conbuildmat.2020.118672

Sirico, A. et al. (2020). Mechanical characterization of cement-based materials containing biochar from gasification. Construction and Building Materials. 246. 1-11. https://doi.org/10.1016/j.conbuildmat.2020.118490

Suliman, W. Harsh, JB. Lail, NIA. Fortuna, AM. Dallmeyer, I. Perez, MG (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy. 84. 37-48. http://dx.doi.org/10.1016/j.biombioe.2015.11.010

Tan, K., Pang, X., Qin, Y, &. Wang, J (2020). Properties of cement mortar containing pulverized biochar pyrolyzed at different temperatures. Construction and Building Materials. 263. 1-11. https://doi.org/10.1016/j.conbuildmat.2020.120616

Tan, X. Liu, Y. Zeng, G. Wang, X. Hu, X. Gu, Y. & Yang, Z (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere. 125. 70-85. http://dx.doi.org/10.1016/j.chemosphere.2014.12.058

Teymouri, E. Mousavi, S. F. Karami, H. Farzin, S. & Kheirabad, M. H. (2020a). Reducing Urban Runoff Pollution Using Porous Concrete Containing Mineral Adsorbents. Journal Environmental Treatment Techniques. 8, Issue 1, 429-436. http://www.jett.dormaj.com

Teymouri, E. Mousavi, S. F. Karami, H. Farzin, S. & Kheirabad, M. H (2020b). Municipal Wastewater pretreatment using porous concrete containing fine-grained mineral adsorbents. Journal of Water Process Engineering. 36. 1-9. https://doi.org/10.1016/j.jwpe.2020.101346

Tripathi, M.Sahu, J. N. & Ganesan, P (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews. 55. 467-481. http://dx.doi.org/10.1016/j.rser.2015.10.122

Tsang, D. C. W., Yu, I. K. M., & Xiong, X (2019). Chapter 18 - Novel Application of Biochar in Stormwater Harvesting. Biochar from Biomass and Waste. III Applications. 1-29. https://doi.org/10.1016/B978-0-12-811729-3.00018-2

Wang, L. Chen, L. Tsang, D. C. W. Guo, B. Yang, J. Shen, Z. Hou, D. Ok, Y. S. & Poon, C. S (2020). Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of Cleaner Production. 258. 1-8. https://doi.org/10.1016/j.jclepro.2020.120678

Wei, S. Zhu, M. Fan, X. Song, J. Li, K.. Jia, W. & Song, H (2019). Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere. 218. 624-631. https://doi.org/10.1016/j.chemosphere.2018.11.177

Xie, C. Yuan, L. Tan. H. Zhang, Y. Zhao, M. & Jia, Y (2021). Experimental study on the water purification performance of biochar-modified pervious concrete. Construction and Building Materials. 285. 1-7. https://doi.org/10.1016/j.conbuildmat.2021.122767

Yin, Q. Zhang, B. Wang, R. & Zhao, Z (2017). Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review. Environmental Science and Pollution Research. 1-13. 10.1007/s11356-017-0338-y

Zeidabadi, ZA. Bakhtiari, S. Abbaslou, H. & Ghanizadeh, A. R (2018). Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Construction and Building Materials. 181. 301-308. https://doi.org/10.1016/j.conbuildmat.2018.05.271

Zhang, R. Kanemaru, K. & Nakazawa, T (2015). Purification of River Water Quality Using Precast Porous Concrete Products. Journal of Advanced Concrete Technology. 13. 163-168. 10.3151/jact.13.163

Publicado

19/08/2021

Cómo citar

CLEMENTINO, F. de S. .; SANTIAGO, J. M.; SOUSA, H. F. de .; CONCEIÇÃO, I. G. C. da .; SANTOS, H. C. dos . Uso de hormigón permeable con aditivos en el tratamiento de aguas residuales, centrándose en el biocarbón: una revisión. Research, Society and Development, [S. l.], v. 10, n. 10, p. e562101019111, 2021. DOI: 10.33448/rsd-v10i10.19111. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19111. Acesso em: 29 nov. 2024.

Número

Sección

Ingenierías