La importancia de la microbiota intestinal y su papel en la infección nosocomial

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.19166

Palabras clave:

Infección nosocomial; interacción huésped-microbiano; microbiota intestinal.; Infección hospitalaria; Interacciones microbiota-huesped; Microbioma gastrointestinal.

Resumen

El tracto gastrointestinal alberga la comunidad de microorganismos más grande y compleja, y esta colonización bacteriana del intestino humano por microbios ambientales comienza inmediatamente después del nacimiento. La microbiota intestinal tiene várias funciones importantes y únicas, incluidas funciones metabólicas como la biotransformación de fármacos y la digestión de compuestos dietéticos; una función de barrera mucosa al inhibir la invasión de patógenos y una función inmunomoduladora. Por otro lado, algunas bacterias comensales pueden ser patógenas, causando infecciones si el hospedador natural está comprometido y, en hospedadores predispuestos, la microbiota intestinal puede estar involucrada en la infección nosocomial. La translocación de bacterias a través de la pared intestinal se considera una de las principales causas de infecciones nosocomiales. El objetivo de esta revisión es proporcionar una visión integral de la microbiota intestinal humana, sus funciones principales, su papel en la salud y la enfermedad, abordando la correlación entre la composición microbiana intestinal y las infecciones nosocomiales.

Citas

Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 76(3), 473–493. https://doi.org/10.1007/s00018-018-2943-4

Adlerberth, I., Lindberg, E., Åberg, N., Hesselmar, B., Saalman, R., Strannegård, I. L., & Wold, A. E. (2006). Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: An effect of hygienic lifestyle? Pediatric Research, 59(1), 96–101. https://doi.org/10.1203/01.pdr.0000191137.12774.b2

Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: Beyond vancomycin resistance. Nature Reviews Microbiology, 10(4), 266–278. https://doi.org/10.1038/nrmicro2761

Ciobârcă, D., Cătoi, A. F., Copăescu, C., Miere, D., & Crișan, G. (2020). Bariatric surgery in obesity: Effects on gut microbiota and micronutrient status. Nutrients, 12(1). https://doi.org/10.3390/nu12010235

Cochetière, M.-F., & Montassier, E. (2011). The Human and His Microbiome Risk Factors for Infections. Metagenomics of the Human Body, 175–216.

Cordeiro, A. M., Oliveira, G. M. de, Rentería, J. M., & Guimarães, C. A. (2007). Revisão sistemática: uma revisão narrativa. Revista Do Colégio Brasileiro de Cirurgiões, 34(6), 428–431. https://doi.org/10.1590/S0100-69912007000600012

Coudray, C., Rambeau, M., Feillet-Coudray, C., Tressol, J. C., Demigne, C., Gueux, E., Mazur, A., & Rayssiguier, Y. (2005). Dietary inulin intake and age can significantly affect intestinal absorption of calcium and magnesium in rats: A stable isotope approach. Nutrition Journal, 4, 1–8. https://doi.org/10.1186/1475-2891-4-29

Dalben, M., Varkulja, G., Basso, M., Krebs, V. L. J., Gibelli, M. A., van der Heijden, I., Rossi, F., Duboc, G., Levin, A. S., & Costa, S. F. (2008). Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. Journal of Hospital Infection, 70(1), 7–14. https://doi.org/10.1016/j.jhin.2008.05.003

Daniel-Hoffmann, M., Sredni, B., & Nitzan, Y. (2012). Bactericidal activity of the organo-tellurium compound AS101 against Enterobacter cloacae. Journal of Antimicrobial Chemotherapy, 67(9), 2165–2172. https://doi.org/10.1093/jac/dks185

Darfeuille-Michaud, A., Jallat, C., Aubel, D., Sirot, D., Rich, C., Sirot, J., & Joly, B. (1992). R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections. Infection and Immunity, 60(1), 44–55. https://doi.org/10.1128/iai.60.1.44-55.1992

Dominguez-Bello, M. G., Blaser, M. J., Ley, R. E., & Knight, R. (2011). Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology, 140(6), 1713–1719. https://doi.org/10.1053/j.gastro.2011.02.011

Doré, J., & Corthier, G. (2010). Le microbiote intestinal humain. Gastroenterologie Clinique et Biologique, 34(SUPPL. 1), S7–S15. https://doi.org/10.1016/S0399-8320(10)70015-4

Elbashier, A. M., Malik, A. G., & Khot, A. P. (1998). Blood stream infections: Micro-organisms, risk factors and mortality rate in Qatif Central Hospital. Annals of Saudi Medicine, 18(2), 176–180. https://doi.org/10.5144/0256-4947.1998.176

Fan, Y., & Pedersen, O. (2021). Gut microbiota in human metabolic health and disease. Nature Reviews Microbiology, 19(1), 55–71. https://doi.org/10.1038/s41579-020-0433-9

Fine, R. L., Manfredo Vieira, S., Gilmore, M. S., & Kriegel, M. A. (2020). Mechanisms and consequences of gut commensal translocation in chronic diseases. Gut Microbes, 11(2), 217–230. https://doi.org/10.1080/19490976.2019.1629236

Flint, H. J., Scott, K. P., Louis, P., & Duncan, S. H. (2012). The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology, 9(10), 577–589. https://doi.org/10.1038/nrgastro.2012.156

Flowers, S. A., Bhat, S., & Lee, J. C. (2020). Potential Implications of Gut Microbiota in Drug Pharmacokinetics and Bioavailability. Pharmacotherapy, 40(7), 704–712. https://doi.org/10.1002/phar.2428

Foxman, B. (2010). The epidemiology of urinary tract infection. Nature Reviews Urology, 7(12), 653–660. https://doi.org/10.1038/nrurol.2010.190

Fujiwara, S., Hashiba, H., Hirota, T., & Forstner, J. F. (1997). Proteinaceous factor(s) in culture supernatant fluids of bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to gangliotetraosylceramide. Applied and Environmental Microbiology, 63(2), 506–512. https://doi.org/10.1128/aem.63.2.506-512.1997

Inweregbu, K., Dave, J., & Pittard, A. (2005). Nosocomial infections. Continuing Education in Anaesthesia, Critical Care and Pain, 5(1), 14–17. https://doi.org/10.1093/bjaceaccp/mki006

Koulas, S. G., Stefanou, C. K., Stefanou, S. K., Tepelenis, K., Zikos, N., Tepetes, K., & Kapsoritakis, A. (2021). Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009–2019). Obesity Surgery, 31(1), 317–326. https://doi.org/10.1007/s11695-020-05074-2

Kuo, C. C., Wang, J. Y., Chien, J. Y., Chen, Y. F., Wu, V. C., Tsai, C. W., & Hwang, J. J. (2010). Nontraumatic pneumocephalus due to nosocomial Enterobacter cloacae infection. Diagnostic Microbiology and Infectious Disease, 66(1), 108–110. https://doi.org/10.1016/j.diagmicrobio.2009.03.024

Lee, C. J., Sears, C. L., & Maruthur, N. (2020). Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences, 1461(1), 37–52. https://doi.org/10.1111/nyas.14107

Lievin, V., Peiffer, I., Hudault, S., Rochat, F., Brassart, D., Neeser, J. R., & Servin, A. L. (2000). Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut, 47(5), 646–652. https://doi.org/10.1136/gut.47.5.646

Manor, O., Dai, C. L., Kornilov, S. A., Smith, B., Price, N. D., Lovejoy, J. C., Gibbons, S. M., & Magis, A. T. (2020). Health and disease markers correlate with gut microbiome composition across thousands of people. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-18871-1

Montalto, M., D’Onofrio, F., Gallo, A., Cazzato, A., & Gasbarrini, G. (2009). Intestinal microbiota and its functions. Digestive and Liver Disease Supplements, 3(2), 30–34. https://doi.org/10.1016/S1594-5804(09)60016-4

Mussi-Pinhata, M. M., & Do Nascimento, S. D. (2001). Neonatal nosocomial infections. [Portuguese]rInfecoes neonatais hospitalares. Jornal de Pediatria, 77(SUPPL. 1), S81–S96. https://doi.org/10.2223/JPED.222

Nagalingam, N. A., & Lynch, S. V. (2012). Role of the microbiota in inflammatory bowel diseases. Inflammatory Bowel Diseases, 18(5), 968–984. https://doi.org/10.1002/ibd.21866

Nyangahu, D. D., & Jaspan, H. B. (2019). Influence of maternal microbiota during pregnancy on infant immunity. Clinical and Experimental Immunology, 198(1), 47–56. https://doi.org/10.1111/cei.13331

Oliva, A., Aversano, L., de Angelis, M., Mascellino, M. T., Miele, M. C., Morelli, S., Battaglia, R., Iera, J., Bruno, G., Corazziari, E. S., Ciardi, M. R., Venditti, M., Mastroianni, C. M., & Vullo, V. (2020). Persistent systemic microbial translocation, inflammation, and intestinal damage during Clostridioides difficile infection. Open Forum Infectious Diseases, 7(1), 1–9. https://doi.org/10.1093/ofid/ofz507

Paone, P., & Cani, P. D. (2020). Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut, 69(12), 2232–2243. https://doi.org/10.1136/gutjnl-2020-322260

Park, H. K., Shim, S. S., Kim, S. Y., Park, J. H., Park, S. E., Kim, H. J., Kang, B. C., & Kim, C. M. (2005). Molecular analysis of colonized bacteria in a human newborn infant gut. Journal of Microbiology, 43(4), 345–353.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.[e-book]. Santa Maria. Ed.

Polage, C. R., Solnick, J. V., & Cohen, S. H. (2012). Nosocomial diarrhea: Evaluation and treatment of causes other than clostridium difficile. Clinical Infectious Diseases, 55(7), 982–989. https://doi.org/10.1093/cid/cis551

Possemiers, S., Bolca, S., Verstraete, W., & Heyerick, A. (2011). The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia, 82(1), 53–66. https://doi.org/10.1016/j.fitote.2010.07.012

Rasmussen, M. A., Thorsen, J., Dominguez-Bello, M. G., Blaser, M. J., Mortensen, M. S., Brejnrod, A. D., Shah, S. A., Hjelmsø, M. H., Lehtimäki, J., Trivedi, U., Bisgaard, H., Sørensen, S. J., & Stokholm, J. (2020). Ecological succession in the vaginal microbiota during pregnancy and birth. ISME Journal, 14(9), 2325–2335. https://doi.org/10.1038/s41396-020-0686-3

Rutella, S., & Locatelli, F. (2011). Intestinal dendritic cells in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology, 17(33), 3761–3775. https://doi.org/10.3748/wjg.v17.i33.3761

Scholtens, P. A. M. J., Oozeer, R., Martin, R., Amor, K. Ben, & Knol, J. (2012). The Early Settlers: Intestinal Microbiology in Early Life. Annual Review of Food Science and Technology, 3(1), 425–447. https://doi.org/10.1146/annurev-food-022811-101120

Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews.

Singh, T. P., Kaur, G., Kapila, S., & Malik, R. K. (2017). Antagonistic activity of Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Frontiers in Microbiology, 8(MAR). https://doi.org/10.3389/fmicb.2017.00486

Sousa, T., Paterson, R., Moore, V., Carlsson, A., Abrahamsson, B., & Basit, A. W. (2008). The gastrointestinal microbiota as a site for the biotransformation of drugs. International Journal of Pharmaceutics, 363(1–2), 1–25. https://doi.org/10.1016/j.ijpharm.2008.07.009

Souza, C. S. C. de, Souza, R. C. de, Evangelista, J. do N., & Ferreira, J. C. de S. (2021). A importância da microbiota intestinal e seus efeitos na obesidade. Research, Society and Development, 10(6), e52110616086. https://doi.org/10.33448/rsd-v10i6.16086

Stecher, B., & Hardt, W. D. (2011). Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 14(1), 82–91. https://doi.org/10.1016/j.mib.2010.10.003

Ubeda, C., Taur, Y., Jenq, R. R., Equinda, M. J., Son, T., Samstein, M., Viale, A., Socci, N. D., Van Den Brink, M. R. M., Kamboj, M., & Pamer, E. G. (2010). Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. Journal of Clinical Investigation, 120(12), 4332–4341. https://doi.org/10.1172/JCI43918

Udager, A., Prakash, A., & Gumucio, D. L. (2010). Dividing the tubular gut: Generation of organ boundaries at the pylorus. In Progress in Molecular Biology and Translational Science (Vol. 96, Issue C). Elsevier Inc. https://doi.org/10.1016/B978-0-12-381280-3.00002-6

Van Daele, E., Knol, J., & Belzer, C. (2019). Microbial transmission from mother to child: improving infant intestinal microbiota development by identifying the obstacles. Critical Reviews in Microbiology, 45(5–6), 613–648. https://doi.org/10.1080/1040841X.2019.1680601

Vandenplas, Y., Carnielli, V. P., Ksiazyk, J., Luna, M. S., Migacheva, N., Mosselmans, J. M., Picaud, J. C., Possner, M., Singhal, A., & Wabitsch, M. (2020). Factors affecting early-life intestinal microbiota development. Nutrition, 78, 110812. https://doi.org/10.1016/j.nut.2020.110812

Wilson, I. D., & Nicholson, J. K. (2017). Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Translational Research, 179, 204–222. https://doi.org/10.1016/j.trsl.2016.08.002

Wu, S., Wang, G., Angert, E. R., Wang, W., Li, W., & Zou, H. (2012). Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0030440

Xu, J., Wang, L., Wang, K., & Zhou, Q. (2012). Eight-year Surveillance of Antimicrobial Resistance among Enterococcus Spp. Isolated in the First Bethune Hospital. Physics Procedia, 33, 1197–1200. https://doi.org/10.1016/j.phpro.2012.05.197

Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., & Goodman, A. L. (2019). Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 570(7762), 462–467. https://doi.org/10.1038/s41586-019-1291-3

Descargas

Publicado

16/08/2021

Cómo citar

CRUZ, L. F. da .; SOUZA, I. L. A.; SOUZA, L. D. de .; ARAÚJO, M. G. de F. .; GRANJEIRO, P. A. La importancia de la microbiota intestinal y su papel en la infección nosocomial. Research, Society and Development, [S. l.], v. 10, n. 10, p. e489101019166, 2021. DOI: 10.33448/rsd-v10i10.19166. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19166. Acesso em: 6 jul. 2024.

Número

Sección

Revisiones