Ratón (Mus musculus) Suizo macho como mejor modelo experimental para el estudio de Giardia duodenalis BIV

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.19250

Palabras clave:

Balb/c; C57BL/6; Modelo experimental; Giardia duodenalis; Giardiasis.

Resumen

En este estudio nos propusimos verificar el modelo experimental murino más adecuado para el análisis de la giardiasis humana. En total se utilizaron 150 animales. Cincuenta ratones (Mus musculus) de cada linaje (Suizos, Balb/c y C57BL/6), 25 hembras y 25 machos, se dividieron en 5 grupos con 5 animales cada uno, según el linaje/sexo. Se infectaron tres grupos con 104 quistes de Giardia duodenalis del assemblage BIV y 2 grupos control negativo. Los animales fueron seguidos y evaluados durante 15 días después de recibir el inóculo. Los parámetros clínicos evaluados fueron peso corporal, consumo de agua y comida, excreción, aparición de pelo y heces, eliminación de quistes de Giardia spp y valoración del comportamiento. Los parámetros clínicos de los grupos infectados por G. duodenalis se compararon con los de los grupos no infectados dentro de su propio linaje/sexo. En los 15 días de seguimiento, solo los ratones Suizos machos presentaron diferencias en estos parámetros. Los animales infectados consumieron más comida, agua y eliminaron más excrementos que el grupo no infectado. No hubo diferencia en el promedio general del peso de los animales o en la evaluación del comportamiento en ningún grupo. Solo los ratones suizos machos infectados eliminaron los quistes de G. duodenalis en las heces, lo que se confirmó mediante el diagnóstico molecular y al observar la presencia de trofozoítos en la mucosa intestinal. Los resultados demuestran que el modelo animal más adecuado para el estudio de la giardiasis humana es el ratón Suizo macho, ya que es el único capaz de desarrollar la infección por quistes de G. duodenalis.

Citas

Almeida, C. R., Bezagio, R. C., Colli, C. M., Romera, L. I. L. & Gomes, M. L. (2021). Elimination of Giardia muris in naturally infected murine experimental model: Complementary treatment. Research, Society and Development, 10(7):e60010716996. https://doi.org/10.33448/rsd-v10i7.16996

Astiazarán-Garcia, H., Espinosa-Cantellano, M., Castañón, G., Chavéz-Munguía, B. & Martínez-Palomo, A. (2000). Giardia lamblia: effect of infection with symptomatic and asymptomatic isolates on growth of gerbils (Meriones unguiculatus). Experimental Parasitology, 95:128-135. https://doi.org/10.1006/expr.2000.4514

Baker, D. G. (2006). Parasitic diseases. In: Suckow MA, Weisbroth SH, Franklin CL (ed) The laboratory rat. Elsevier, 453-478.

Baker, J. M. & Alonso, W. J. (2018). Rotavirus vaccination takes seasonal signature of childhood diarrhea back to pre-sanitation era in Brazil. Journal of Infection, 76:68–77. https://doi.org/10.1016/j.jinf.2017.10.001

Baltert, L. A., Roche, J., Kolling, G., Bolick, D., Noronha, F., Naylor, C., Hoffman, P, Warren, C., Singer, S. & Guerrant, R. (2013). Persistent G. lamblia impairs growth in a murine malnutrition model. The Journal of Clinical Investigation, 123:2672–2684. https://doi.org/10.1172/JCI67294

Bezagio, R. C., Colli, C. M., Romera, L. I. L., Almeida, C. R., Ferreira, É. C., Mattia, S., & Gomes, M. L. (2020). Improvement in cyst recovery and molecular detection of Giardia duodenalis from stool samples. Molecular Biology Reports, 47(2), 1233–1239. https://doi.org/10.1007/s11033-019-05224-5

Bezagio, R. C., Colli, C. M., Romera, L. I. L., Ferreira, É. C., Falavigna-Guilherme, A. L. & Gomes, M. L. (2017). Synergistic effects of fenbendazole and metronidazole against Giardia muris in Swiss mice naturally infected. Parasitology Research, 116:939- 944. https://doi.org/ 10.1007/s00436-016-5367-9

Bicalho, K. A., Araujo, F. T. M., Rocha, R. S. & Carvalho, O. (2007). Perfil sanitário de colônias de camundongos e ratos de biotérios de Minas Gerais: I - Endo e ectoparasitos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 59:1478-1484. https://doi.org/10.1590/S0102-09352007000600020

Buret, A., Gall, D. G. & Olson, M. E. (1991). Growth, activities of enzymes in the small intestines and ultrastructure of microvillous border in gerbils infected with Giardia duodenalis. Parasitology Research, 77:109-114. https://doi.org/10.1007/bf00935423

Cacciò, S. M. & Ryan, U. (2008). Molecular epidemiology of giardiasis. Molecular and Biochemical Parasitology, 160:75–80. https://doi.org/10.1016/j.molbiopara.2008.04.006

Chorilli, M., Michelin, D. C. & Salgado, H. R. N. (2007). Animais de laboratório: o camundongo. Revista de Ciências Farmacêuticas Básica e Aplicada, 28:1123. http://servbib.fcfar.unesp.br/seer/index.php/Cien_Farm/article/viewArticle/340

Cock, I. E. & Rayan, P. (2020). Ascorbic acid potentiates the Giardia duodenalis growth inhibitory activity of pure Terminalia ferdinandiana Exell compounds. Parasitology Research. https://doi.org/10.1007/s00436-019-06579-1

Colli, C. M., Bezagio, R. C., Nishi, L., Bignotto, T. S., Ferreira, É. C., Falavigna-Guilherme, A. L. & Gomes, M. L. (2015). Identical Assemblage of Giardia duodenalis in Humans, Animals and Vegetables in an Urban Area in Southern Brazil Indicates a Relationship among Them. Plos One, 10:e0118065. https://doi.org/10.1371/journal.pone.0118065

Dressen, L., Bosscher, K., Grit, G., Staels, B., Lubberts, E., Bauge, E. & Geldhof, P. (2014). Giardia muris infection in mice is associated with a protective interleukin 17A response and induction of peroxisome proliferator activated receptor alpha. Infection and Immunology, 82:3333-3340. https://doi.org/10.1128/IAI.01536-14

Ehret, T., Torelli, F., Klotz, C., Pedersen, A. B. & Seeber, F. (2017). Translational Rodent Models for Research on Parasitic Protozoa - A Review of Confounders and Possibilities. Frontiers in Cellular and Infection Microbiology, 7:238. https://doi.org/10.3389/fcimb.2017.00238

Fantinatti, M., Bello, A. R., Fernandes, O. & Da-Cruz, A. M. (2016). Identification of Giardia lamblia Assemblage E in Humans Points to a New Anthropozoonotic Cycle. Journal of Infectious Diseases, 214:1256–1259. https://doi.org/10.1093/infdis/jiw361

Faust, E. C., D´Antoni, J. S., Odom, V., Miller, M. J., Peres, C., Sawitz, W., Thomen, I. F., Tobie, J. & Walker, J. H. (1938). A critical study of clinical laboratory technics for the diagnosis of protozoan cysts and helminth eggs in feces. The American Journal of Tropical Medicine and Hygiene, 18:169-183. https://doi.org/10.4269/ajtmh.1938.s1-18.169

Feng, Y. & Xiao, L. (2011). Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clinical Microbiology Reviews, 24:110–140. https://doi.org/10.1128/CMR.00033-10

Guénet, J. L. (2011). Animal models of human genetic disesases: do they need to be faithful to be useful? Molecular Genetics and Genomics, 286:1-20. https://doi.org/10.1007/s00438-011-0627-y

Goyal, N., Rishi, P. & Shukla, G. (2013). Lactobacillus rhamnosus GG antagonizes Giardia intestinalis induced oxidative stress and intestinal disaccharidases: an experimental study. World Journal of Microbiology and Biotechnology, 29:1049-1057. https://doi.org/10.1007/s11274-013-1268-6

Hooshyar, H., Rostamkhani, P., Arbabi, M. & Delavari, M. (2019). Giardia lamblia infection: review of current diagnostic strategies. Gastroenterology and Hepatology from Bed to Bench, 12:3-12. https://doi.org/10.22037/ghfbb.v0i0.1414

Lasek-Nesselquist, E., Welch, D. M. & Sogin, M. L. (2010). The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminar analysis of G. duodenalis population biology in marine system. International Journal for Parasitology, 40:1063–1074. https://doi.org/437 10.1016/j.ijpara.2010.02.015

Lebbad, M., Mattsson, J. G., Christensson, B., Ljungström, B., Backhans, A., Andersson, J. O. & Svärd, S. G. (2010). From mouse to moose: multilocus genotyping of Giardia isolates from various animal species. Veterinary Parasitology, 168:231–239. https://doi.org/10.1016/j.vetpar.2009.11.003

Lemée, V., Zaharia, I., Nevez, G., Rabodonirina, M., Brasseur, P., Ballet, J. J. & Favannec, L. (2000). Metronidazole and albendazole susceptibility of 11 clinical isolates of Giardia duodenalis from France. Journal of Antimicrobial Chemotherapy, 46:819–821. https://doi.org/10.1093/jac/46.5.819

Li, E., Liu, M. & Singer, S. M. (2014). Resistance to reinfection in mice as a vaccine model for giardiasis. Human Vaccines & Immunotherapeutics, 10:1536-1543. https://doi.org/10.4161/hv.29116

Lima, A. A. M., Oliveira, D. B., Quetz, J. S., Havt, A., Prata, M. M. G., Lima, I. F. N., Soares, A. M., Filho, J. Q., Lima, N. L., Medeiros, P. H. Q. S., Santos, A. K. S., Veras, H. N., Gondim, R. N. D. G., Pankov, R. C., Bona, M. D., Rodrigues, F. A. P., Moreira, R. A., Moreira, A. C. O. M., Bertolini, M., Bertolini, L. R., Freitas, V. J. F., Houpt, E. R. & Guerrant, R. L. (2019). Etiology and severity of diarrheal diseases in infants at the semiarid region of Brazil: A case-control study. PLoS Neglected Tropical Diseases, 13:e0007154. https://doi.org/10.1371/journal.pntd.0007154

Massironi, S. M. G. (2009). Padrão genético. In: Lapchik VBV, Mattaraia VGM, Ko GM (ed) Cuidados e Manejo de Animais de Laboratório, (2rd ed.) Editora Atheneu, 385 – 398.

Matsuchita, H. L. P., Pitz, A. F., Melanda, F. N., Bregano, R. M., Oliveira, F. J. A., Mori, F. M. R. L., Menezes, M. C. N. D., Costa, I. N., Pavanelli, W. R., Gomes, M. L., Colli, C. M., Venancio, E. J. & Conchon-Costa, I. (2017). Descriptive molecular epidemiology study of Giardia duodenalis in children of Parana State, Brazil. International Journal of Epidemiology Research, 4:1–9. http://ijer.skums.ac.ir/article_22927.html

Mayol, G. F., Revuelta, M. V., Salusso, A., Touz, M. C. & Rópolo, A. S. (2019). Evidence of nuclear transport mechanisms in the protozoan parasite Giardia lamblia. Biochimica et biophysica acta - Molecular Cell Research, 1867:118566. https://doi.org/10.1016/j.bbamcr.2019.118566

Mizutani, H., Tamagawa-Mineoka, R., Minami, Y., Yagita, K. & Katoh, N. (2017). Constant light exposure impairs immune tolerance development in mice. Journal of Dermatological Science, 86:63–70. https://doi.org/10.1016/j.jdermsci.2016.12.016

Monis, P. T., Andrews, R. H., Mayrhofer, G. & Ey, P. L. (1999). Molecular systematics of the parasitic protozoan Giardia intestinalis. Molecular Biology Evolution, 16:1135-1144. https://doi.org/10.1093/oxfordjournals.molbev.a026204

Nakada, L. Y. K., Franco, R. M. B., Fiuza, V. R. S., Santos, L. U., Branco, N. & Guimarães, J. R. (2018). Pre-ozonation of source water: assessment of efficacy against Giardia duodenalis cysts and effects on natural organic matter. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.09.164

Pavanelli, M. F., Colli, C. M., Gomes, M. L., Góis, M. B., Alcântara-Nogueira, G. M., Almeida-Araújo, E. J. & de Gonçales-Sant’Ana, D. M. (2018). Comparative study of effects of assemblages AII and BIV of Giardia duodenalis on mucosa and microbiota of the small intestine in mice. Biomedicine & Pharmacotherapy, 101:563–571. https://doi.org/doi:10.1016/j.biopha.2018.02.141

Qi, M., Ji, X., Zhang, Y., Wei, Z., Jing, B., Zhang, L., Lin, X., Karim, M. R., Wang, H. & Sun, M. (2020). Prevalence and multilocus analysis of Giardia duodenalis in racehorses in China. Parasitology Research. https://doi.org/doi:10.1007/s00436-019-06594-2

Scott, K. G. E., Logan, M. R., Klammer, G. M., Teoh, D. A. & Buret, A. G. (2000). Jejunal brush border microvillous alterations in Giardia muris - infected mice: role of T lymphocytes and interleukin-6. Infection and Immunity, 68:3412-3418. https://doi.org/ 10.1128/ iai.68.6.3412-3418.2000

Soares, J. F., Silva, A. S., Oliveira, C. B., Silva, M. K., Mariscano, G., Salomão, E. L. & Monteiro, S. G. (2008). Parasitismo por Giardia sp. e Cryptosporidium sp. em Coendou villosus. Ciência Rural, 38:548–550. https://doi.org/10.1590/s0103-84782008000200043

Solaymani-Mohammadi, S. & Singer, S. M. (2010). Giardia duodenalis: the double-edged sword of immune responses in Giardiasis. Experimental Parasitology, 126:292–297. https://doi.org/10.1016/j.exppara.2010.06.014

Strober, W. (2015). Trypan Blue Exclusion Test of Cell Viability. Current Protocols in Immunology. https://doi.org/10.1002/0471142735.ima03bs111

Thompson, R. C. A., Hopkins, R. M. & Homan, W. L. (2000). Nomenclature and genetic groupings of Giardia infecting mammals. Parasitology Today, 16:210-213. https://doi.org/10.1016/s0169-4758(99)01624-5

Uda-Shimoda, C. F., Colli, C. M., Pavanelli, M. F., Falavigna-Guilherme, A. L. & Gomes, M. L. (2014). Simplified protocol for DNA extraction and amplification of 2 molecular markers to detect and type Giardia duodenalis. Diagnostic Microbiology and Infectious Disease, 78(1):53-58. https://doi.org/10.1016/j.diagmicrobio.2013.09.008

Vaidya, H. B., Gangadaran, S. & Cheema, S. K. (2017). A high fat-high sucrose diet enriched in blue mussels protects against systemic inflammation, metabolic dysregulation and weight gain in C57BL/6 mice. Food Research International, 100:78–85. https://doi.org/10.1016/j.foodres.2017.08.033

Von-Allmen, N., Christen, S., Forster, U., Gottstein, B., Welle, M. & Muller, N. (2006). Acute trichinellosis increases susceptibility to Giardia lamblia infection in the mouse model. Parasitology, 133:139-149. https://doi.org/10.1017/S0031182006000230

Zhao, Z., Wang, R., Zhao, W., Qi, M., Zhao, J., Zhang, L., Li, J. & Liu, A. (2015). Genotyping and subtyping of Giardia and Cryptosporidium isolates from commensal rodents in China. Parasitology, 142:800–806. https://doi.org/10.1017/S0031182014001929

Ware, M. W. & Villegas, E. N. (2019). Propagation of Giardia duodenalis cysts in immunosuppressed CF-1 mice. Veterinary Parasitology, 268:32-35. https://doi.org/10.1016/j.vetpar.2019.02.010

Descargas

Publicado

16/08/2021

Cómo citar

ROMERA, L. I. L.; BEZAGIO, R. C.; FERREIRA, W. C.; ALMEIDA, C. R. de; GOMES, M. L. . Ratón (Mus musculus) Suizo macho como mejor modelo experimental para el estudio de Giardia duodenalis BIV. Research, Society and Development, [S. l.], v. 10, n. 10, p. e493101019250, 2021. DOI: 10.33448/rsd-v10i10.19250. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19250. Acesso em: 7 jul. 2024.

Número

Sección

Ciencias de la salud