Aspirado de médula ósea: una fuente viable de células madre para la regeneración ósea. Una revisión sistemática

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i11.19265

Palabras clave:

Médula ósea; Regeneración ósea; Hueso; Revisión sistemática; Células madre.

Resumen

Esta revisión sistemática evaluó la efectividad del aspirado de médula ósea (AMO) para mejorar la reparación ósea en humanos. Encuesta exhaustiva de ensayos clínicos aleatorios publicados hasta junio de 2021 y enumerados en las bases de datos de PubMed / MEDLINE, EMBASE y Cochrane Library siguiendo la declaración Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA). Dos revisores buscaron de forma independiente los estudios elegibles, seleccionaron el artículo final y extrajeron los datos de los estudios seleccionados para evaluarlos cualitativamente. En general, se incluyeron 13 estudios en la revisión. Modelos experimentales implicados Seudoartrosis aséptica postraumática de huesos largos del miembro superior, crestas alveolares después de extracción dentaria, fractura atrófica mandibular, lesiones óseas benignas, alargamiento tibial bilateral, fractura del fémur del cuello intracapsular, aumento del reborde horizontal maxilar, necrosis de la cabeza femoral no traumática, y aumento del seno maxilar. Los análisis incluyeron radiografías, tomografías, biopsias y evaluaciones clínicas. Diez estudios informaron una mejora en la formación de hueso (resultado primario) con el uso combinado o no de AMO con otros biomateriales y tres estudios no encontraron ningún beneficio como resultado del uso de AMO para tratar defectos óseos. Los resultados secundarios relacionados con el proceso de curación también se evaluaron y fueron positivos, como las complicaciones posoperatorias y la puntuación analógica visual del dolor. Dentro de los límites del presente estudio, se puede concluir que BMA puede mejorar las primeras etapas del proceso de curación ósea.

Citas

Badiavas, E. V., & Falanga. V. (2013). Treatment of chronic wounds with bone marrow-derived cells. Arch. Dermatol. 139: 510-516.

Bansal, S., Chauhan, V., Sharma, S., Maheshwari, R., Juyal, A., & Raghuvanshi, S. (2009). Evaluation of hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute for posterolateral spinal fusion. Indian J. Orthop. 43: 234-239.

Bara, J. J., Richards, R. G., Alini, M., & Stoddart, M. J. (2014). Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells. 32: 1713-1723.

Burastero, G., Scarfì, S., Ferraris, C., Fresia, C., Sessarego, N., Fruscione, F., Monetti, F., Scarfò, F., Schupbach, P., Podestà, M., Grappiolo, G., & Zocchi, E. (2010). The association of human mesenchymal stem cells with BMP-7 improves bone regeneration of critical-size segmental bone defects in athymic rats. Bone. 47: 117-126.

Clines, G. A. (2010). Prospects for Osteoprogenitor Stem Cells in Fracture Repair and Osteoporosis. Curr. Opin. Organ. Transpl. 15: 73-78.

Clough, B. H., McCarley, M. R., Krause, U., Zeitouni, S., Froese, J. J., McNeill, E. P., Chaput, C. D., Sampson, H. W., & Gregory, C. A. (2015). Bone regeneration with osteogenically enhanced mesenchymal stem cells and their extracellular matrix proteins. J. Bone Miner. Res. 30: 83-94.

Da Costa, C. E. S., Pelegrine, A. A., Fagundes, D. J., Simoes, M. de J., & Taha, M. O. (2011). Use of corticocancellous allogeneic bone blocks impregnated with bone marrow aspirate: A clinical, tomographic, and histomorphometric study. Gen. Dent. 59: e200-e205.

Damron, T. A., Lisle, J., Craig, T., Wade, M., Silbert, W., & Cohen, H. (2013). Ultraporous B-tricalcium phosphate alone or combined with bone marrow aspirate for benign cavitary lesions. J Bone Joint Surg Am. 95: 158-166.

Duque, G. (2008). Bone and fat connection in aging bone. Curr. Opin. Rheumatol. 20: 429-434.

El-Adl, G., & Ali, A. M. (2013). Does bone marrow affect the radiological outcome when added to biphasic ceramic graft in treatment of benign bone lesions?. Eur. J. Orthop. Surg. Traumatol. 23: 13-20.

Fontes Martins, L. C., Sousa Campos de Oliveira, A. L., Aloise, A. C., Scavone de Macedo, L. G., Teixeira, M. L., Moy, P. K., & Pelegrine, A. A. (2021). Bone marrow aspirate concentrate and platelet-rich fibrin in fresh extraction sockets: A histomorphometric and immunohistochemical study in humans. J. Craniomaxillofac. Surg. 49: 104–109.

Gao, C., Gao, Q., Li, Y., Rahaman, M.N., Teramoto, A., & Abe, K. (2012). Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration. J. Biomed. Mater. Res. Part A. 100: 1324-1334.

Greenberger, J. S., & Epperly, M. (2009). Bone Marrow-Derived Stem Cells and Radiation Response. Semin. Radiat. Oncol. 19: 133-139.

Gupta, G. J., Karki, K., Jain, P., & Saxena, A. K. (2017). Autologous Bone Marrow Aspirate Therapy for Skin Tissue Engineering and Tissue Regeneration. Adv. Wound Care. 6: 135-142.

Harada, N., Watanabe, Y., Sato, K., Abe, S., Yamanaka, K., Sakai, Y., Kaneko, T., & Matsushita, T. (2014). Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials. 35: 7800-7810.

He, N., Zhang, L., Cui, J., & Li, Z. (2014). Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells. Bone Marrow Res. 2014: 128436.

Isern, J., & Méndez-Ferrer, S. (2011). Stem cell interactions in a bone marrow niche. Current. Osteoporos. Rep. 9: 210-218.

Jadad, A. R., Moore, R. A., Carroll, D., Jenkinson, C., Reynolds, D. J., Gavaghan, D. J., & McQuay, H. J. (1996). Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials. 17: 1-12.

Jäger, M., Herten, M., Fochtmann, U., Fischer, J., Hernigou, P., Zilkens, C., Hendrich, C., & Krauspe, R. (2011). Bridging the gap: Bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J. Orthop. Res. 29: 173-180.

Kaigler, D., Pagni, G., Park, C.H., Tarle, S.A., Bartel, R.L., Giannobile, W.V. (2010). Angiogenic and Osteogenic Potential of Bone Repair Cells for Craniofacial Regeneration. Tissue Eng. Part A. 16: 2809- 2820.

Kraus, K. H., & Kirker-Head, C. (2006). Mesenchymal stem cells and bone regeneration. Vet. Surg. 35: 232-242.

Lana, J. F., da Fonseca, L. F., Azzini, G., Santos, G., Braga, M., Cardoso Junior, A. M., Murrell, W. D., Gobbi, A., Purita, J., & Percope de Andrade, M. A. (2021). Bone Marrow Aspirate Matrix: A Convenient Ally in Regenerative Medicine. Int. J. Mol. Sci. 22: 2762.

Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics. 33: 159-174.

Lee, D. H., Ryu, K. J., Kim, J. W., Kang, K. C., & Choi, Y. R. (2014). Bone Marrow Aspirate Concentrate and Platelet-rich Plasma Enhanced Bone Healing in Distraction Osteogenesis of the Tibia. Clin. Orthop. Rel. Res. 472: 3789-3797.

Lemos, C. A. A., Mello, C. C., dos Santos, D. M., Verri, F. R., Goiato, M. C., & Pellizzer, E. P. (2016). Effects of platelet-rich plasma in association with bone grafts in maxillary sinus augmentation: a systematic review and meta-analysis. Int. J. Oral Maxillofac. Surg. 45: 517-525.

Mannelli, G., Arcuri, F., Conti, M., Agostini, T., Raffaini, M., & Spinelli, G. (2017). The role of bone marrow aspirate cells in the management of atrophic mandibular fractures by mini-invasive surgical approach: Single-institution experience. J. Cranio-Maxillofacial Surg. 45: 694-703.

Mazzotta, A., Stagni, C., Rocchi, M., Rani, N., Del Piccolo, N., Filardo, G., & Dallari, D. (2021). Bone marrow aspirate concentrate/platelet-rich fibrin augmentation accelerates healing of aseptic upper limb nonunions. J. Orthop. Traumatol. 22: 21.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2010). Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and publication bias. Int. J. Surg. 8: 336-341.

Nagata, M. J., Santinoni, C. S., Pola, N. M., de Campos, N., Messora, M. R., Bomfim, S. R., Ervolino, E., Fucini, S. E., Faleiros, P. L., Garcia, V. G., Bosco, A. F. (2013). Bone marrow aspirate combined with low-level laser therapy: A new therapeutic approach to enhance bone healing. J. Photochem. Photobiol. B Biol. 121: 6-14.

Oliveira, H. F. E., Verri, F., Lemos, C. A., Cruz, R., Batista, V. E. S., Pellizzer, E., Santinoni, C. (2020). Clinical Evidence for Treatment of Class II Periodontal Furcation Defects. Systematic Review and Meta-analysis. J. Int. Acad. Periodontol. 22:117-128.

Pasquali, P. J., Teixeira, M. L., de Oliveira, T. A., de Macedo, L. G., Aloise, A. C., Pelegrine, A. A. (2015). Maxillary Sinus Augmentation Combining Bio-Oss with the Bone Marrow Aspirate Concentrate: A Histomorphometric Study in Humans. Int. J. Biomater. 2015: 121286.

Pelegrine, A. A., da Costa, C. E., Correa, M. E., Marquesm J. F. Jr. (2010). Clinical and histomorphometric evaluation of extraction sockets treated with an autologous bone marrow graft. Clin. Oral Implants. Res. 21: 535-542.

Pelegrine, A. A., Teixeira, M. L., Sperandio, M., Almada, T. S., Kahnberg, K. E., Pasquali, P. J., Aloise, A. C. (2016). Can bone marrow aspirate concentrate change the mineralization pattern of the anterior maxilla treated with xenografts? A preliminary study. Contemp. Clin. Dent. 7: 21-26.

Pepke, W., Kasten, P., Beckmann, N.A., Janicki, P., Egermann, M. (2016). Core decompression and autologous bone marrow concentrate for treatment of femoral head osteonecrosis: A randomized prospective study. Orthop Rev. (Pavia). 8: 6162.

Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., Marshak, D. R. (1999). Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 284: 143-147.

Salamanna, F., Contartese, D., Nicoli Aldini, N., Barbanti Brodano, G., Griffoni, C., Gasbarrini, A., Fini, M. (2018). Bone marrow aspirate clot: A technical complication or a smart approach for musculoskeletal tissue regeneration? J. Cell Physiol. 233: 2723-2732.

Santinoni, C. D., Oliveira, H. F., Batista, V. E., Lemos, C. A., Verri, F. R. (2017). Influence of low-level laser therapy on the healing of human bone maxillofacial defects: A systematic review. J. Photochem. Photobiol. B Biol. 169: 83-89.

Santinoni, C. S., Neves, A. P. C., Almeida, B. F. M., Kajimoto, N. C., Pola, N. M., Caliente, E. A., Belem, E. L. G., Lelis, J. B., Fucini, S. E., Messora, M. R., Garcia, V. G., Bomfim, S. R. M., Ervolino, E., Nagata, M. J. H. (2021). Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J. Biomed. Mater. Res. A. 109: 849-858.

Sauerbier, S., Rickert, D., Gutwald, R., Nagursky, H., Oshima, T., Xavier, S. P., Christmann, J., Kurz, P., Menne, D., Vissink, A., Raghoebar, G., Schmelzeisen, R., Wagner, W., Koch, F. P. (2011). Bone Marrow Concentrate and Bovine Bone Mineral for Sinus Floor Augmentation: A Controlled, Randomized, Single-Blinded Clinical and Histological Trial—Per-Protocol Analysis. Tissue Eng. Part A. 17: 2187-2197.

Schneider, R. K., Puellen, A., Kramann, R., Raupach, K., Bornemann, J., Knuechel, R., Pérez-Bouza, A., Neuss, S. (2010). The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials. 31: 467-480.

Siegel, H. J., Baird, R. C. 3rd, Hall, J., Lopez-Ben, R., Lander, P. H. (2008). The outcome of composite bone graft substitute used to treat cavitary bone defects. Orthopedics. 31: 754.

Smiler, D., Soltan, M., Albitar, M. (2008). Toward the Identification of Mesenchymal Stem Cells in Bone Marrow and Peripheral Blood for Bone Regeneration. Implant Dent. 17: 236-274.

Soltan, M., Smiler, D., Prasad, H. S., Rohrer, M. D. (2017). Bone Block Allograft Impregnated with Bone Marrow Aspirate. Implant Dent. 16: 329- 339.

Tewari, D., Khan, M. P., Sagar, N., China, S. P., Singh, A. K., Kheruka, S. C., Barai, S., Tewari, M. C., Nagar, G. K., Vishwakarma, A. L., Ogechukwu, O. E., Bellare, J. R., Gambhir, S., Chattopadhyay, N. (2015). Ovariectomized Rats with Established Osteopenia have Diminished Mesenchymal Stem Cells in the Bone Marrow and Impaired Homing, Osteoinduction and Bone Regeneration at the Fracture Site. Stem Cell Rev. Reports. 11: 309-321.

U, V., Mehrotra, D., Howlader, D., Kumar, S., Anand, V. (2019). Bone Marrow Aspirate in Cystic Maxillofacial Bony Defects. J. Craniofac. Surg. 30: e247-e251.

Verma, N., Singh, M. P., Ul-Haq, R., Rajnish, R. K., Anshuman, R. (2017). Outcome of bone marrow instillation at fracture site in intracapsular fracture of femoral neck treated by head preserving surgery. Chinese J. Traumatol. 20: 222-225.

Weel, H., Mallee, W. H., Van Dijk, C. N., Blankevoort, L., Goedegebuure, S., Goslings, J. C., Kennedy, J. G., Kerkhoffs, G. M. (2015). The effect of concentrated bone marrow aspirate in operative treatment of fifth metatarsal stress fractures, a double-blind randomized controlled trial. BMC Musculoskelet. Disord. 16: 211.

Zhang, Z. Y., Teoh, S. H., Chong, M. S., Schantz, J. T., Fisk, N. M., Choolani, M. A., & Chan, J. (2009). Superior Osteogenic Capacity for Bone Tissue Engineering of Fetal Compared with Perinatal and Adult Mesenchymal Stem Cells. Stem Cells. 27: 126-137.

Descargas

Publicado

24/08/2021

Cómo citar

SANTINONI, C. dos S. .; LEVI, Y. L. de A. S. .; TONETO, J. P. P. .; CAZUZA, J. A. .; MAIA, L. P. .; VERRI, F. R. . Aspirado de médula ósea: una fuente viable de células madre para la regeneración ósea. Una revisión sistemática. Research, Society and Development, [S. l.], v. 10, n. 11, p. e94101119265, 2021. DOI: 10.33448/rsd-v10i11.19265. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19265. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias de la salud