Evaluación de la inmunotinción de Fibronectina y Tenascina inducida por la reparación de cementos biocerámicos: un estudio en tejido subcutáneo de ratas wistar

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i10.19325

Palabras clave:

Endodontia; Imuno-Histoquímica; Inflamação; Teste de Materiais; Tenascina.

Resumen

El objetivo del estudio fue evaluar la presencia de inmunomarcadores de fibronectina y tenascina en el tejido subcutáneo de ratas con cemento reparador biocerámico Biodentine®, en comparación con MTA Blanco Angelus® y Ca(OH)2. Se implantaron tubos de polietileno en el tejido subcutáneo de 32 ratas Wistar macho que contenían los materiales y un tubo vacío para el control (n = 8 animales). Después de los días 7, 15, 30 y 60, se sacrificó a los animales, se retiraron los tubos de polietileno con los tejidos circundantes y se prepararon las muestras para el análisis de inmunotinción. Los datos se analizaron mediante la prueba de Kruskal-Wallis y Dunn con un nivel de significancia del 5%. Los materiales mostraron un patrón moderado de inmunotinción para fibronectina después de 7 días y tenascina después de 15 días. El grupo Biodentine a los 60 días fue el único que mostró un alto nivel de inmunotinción para las glicoproteínas. Podemos concluir que el cemento Biodentine indujo un mayor patrón de inmunotinción de tenascina y fribronectina en 60 días, igualando MTA Blanco Angelus® y Ca(OH)2 en los otros períodos, mostrando resultados superiores a otros materiales.

Citas

American Association of Endodontists. (2016). Glossary of endodontic terms. 2020, in https://www.aae.org/specialty/clinical-resources/glossary-endodontic-terms/.

Baldissera, E. Z., Silva, A. F., Gomes, A. P., Etges, A., Botero, T., Demarco, F. F., & Tarquinio, S. B. (2013). Tenascin and fibronectin expression after pulp capping with different hemostatic agents: a preliminary study. Brazilian dental journal, 24(3), 188–193.

Benetti, F., Briso, A., Ferreira, L. L., Carminatti, M., Álamo, L., Ervolino, E., Dezan-Júnior, E., & Cintra, L. (2018). In Vivo Study of the Action of a Topical Anti-Inflammatory Drug In Rat Teeth Submitted To Dental Bleaching. Brazilian dental journal, 29(6), 555–561.

Benetti, F., Bueno, C., Reis-Prado, A., Souza, M. T., Goto, J., Camargo, J., Duarte, M., Dezan-Júnior, E., Zanotto, E. D., & Cintra, L. (2020). Biocompatibility, Biomineralization, and Maturation of Collagen by RTR®, Bioglass and DM Bone® Materials. Brazilian dental journal, 31(5), 477–484.

Benetti, F., Gomes-Filho, J. E., de Azevedo-Queiroz, I. O., Carminatti, M., Conti, L. C., Dos Reis-Prado, A. H., de Oliveira, S., Ervolino, E., Dezan-Júnior, E., & Cintra, L. (2021). Biological assessment of a new ready-to-use hydraulic sealer. Restorative dentistry & endodontics, 46(2), e21.

Benetti, F., Queiroz, Í., Cosme-Silva, L., Conti, L. C., Oliveira, S., & Cintra, L. (2019). Cytotoxicity, Biocompatibility and Biomineralization of a New Ready-for-Use Bioceramic Repair Material. Brazilian dental journal, 30(4), 325–332.

Bhambhani, S. M., & Bolanos, O. R. (1993). Tissue reactions to endodontic materials implanted in the mandibles of guinea pigs. Oral surgery, oral medicine, and oral pathology, 76(4), 493–501.

Bueno, C. R., Valentim, D., Marques, V. A., Gomes-Filho, J. E., Cintra, L. T., Jacinto, R. C., & Dezan-Junior, E. (2016). Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers. Brazilian oral research, 30(1), S1806-83242016000100267.

Bueno, C., Valentim, D., Jardim Junior, É. G., Mancuso, D. N., Sivieri-Araujo, G., Jacinto, R. C., Cintra, L., & Dezan-Junior, E. (2018). Tissue reaction to Aroeira (Myracrodruon urundeuva) extracts associated with microorganisms: an in vivo study. Brazilian oral research, 32, e42.

Bueno, C., Vasques, A., Cury, M., Sivieri-Araújo, G., Jacinto, R. C., Gomes-Filho, J. E., Cintra, L., & Dezan-Júnior, E. (2019). Biocompatibility and biomineralization assessment of mineral trioxide aggregate flow. Clinical oral investigations, 23(1), 169–177.

Bueno, C.R.E., Sumida, D.H., Duarte, M.A.H., Ordinola-Zapata, R., Azuma, M.M., Guimarães, G., Pinheiro, T.N., & Cintra, L.T.A. (2021). Accuracy of radiographic pixel linear analysis in detecting bone loss in periodontal disease: Study in diabetic rats. Saudi Dental Journal, in press.

Bueno, CRE., Lopes, GA., Valentim, D., Marques, VAS., Vasques, AMV., Cury, MTS., Dezan-Junior, E. (2017). Falhas na mistura de cimentos endodônticos: um estudo de biocompatibilidade in vivo. Brazilian Dental Science , 20 (4), 85.

Camilleri J. (2007). Hydration mechanisms of mineral trioxide aggregate. International endodontic journal, 40(6), 462–470.

Chicarelli, L., Webber, M., Amorim, J., Rangel, A., Camilotti, V., Sinhoreti, M., & Mendonça, M. J. (2021). Effect of Tricalcium Silicate on Direct Pulp Capping: Experimental Study in Rats. European journal of dentistry, 15(1), 101–108.

Chiquet-Ehrismann, R. (1990). What distinguishes tenascin from fibrnectin. Federation of American Societes for Experimental Biology ,4, 2598–604.

Cintra, L. T., Ribeiro, T. A., Gomes-Filho, J. E., Bernabé, P. F., Watanabe, S., Facundo, A. C., Samuel, R. O., & Dezan-Junior, E. (2013). Biocompatibility and biomineralization assessment of a new root canal sealer and root-end filling material. Dental traumatology : official publication of International Association for Dental Traumatology, 29(2), 145–150.

Cintra, L., Benetti, F., de Azevedo Queiroz, Í. O., de Araújo Lopes, J. M., Penha de Oliveira, S. H., Sivieri Araújo, G., & Gomes-Filho, J. E. (2017). Cytotoxicity, Biocompatibility, and Biomineralization of the New High-plasticity MTA Material. Journal of endodontics, 43(5), 774–778.

Corral Nuñez, C. M., Bosomworth, H. J., Field, C., Whitworth, J. M., & Valentine, R. A. (2014). Biodentine and mineral trioxide aggregate induce similar cellular responses in a fibroblast cell line. Journal of endodontics, 40(3), 406–411.

Dammaschke, T., Gerth, H. U., Züchner, H., & Schäfer, E. (2005). Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dental materials: official publication of the Academy of Dental Materials, 21(8), 731–738.

Dezan-Júnior, E., Bueno, CRE., Vasques, AMV., Souza, V., de Nery, MJ., Otoboni-Filho, JA., Bernabé, PFE., Gomes-Filho, JE., Cintra, LTA., Jacinto, R., Sivieri-Araújo, G., & Holland, R. (2021). Influence of different obturation techniques in coronal bacterial infiltration: study in dogs. Research, Society and Development,10(4), e11010413884.

Eskandarizadeh, A., Shahpasandzadeh, M. H., Shahpasandzadeh, M., Torabi, M., & Parirokh, M. (2011). A comparative study on dental pulp response to calcium hydroxide, white and grey mineral trioxide aggregate as pulp capping agents. Journal of conservative dentistry, 14(4), 351–355.

Estrela, C., & Holland, R. (2003). Calcium hydroxide: study based on scientific evidences. Journal of applied oral science : revista FOB, 11(4), 269–282.

Estrela, C., Decurcio, D. A., Rossi-Fedele, G., Silva, J. A., Guedes, O. A., & Borges, Á. H. (2018). Root perforations: a review of diagnosis, prognosis and materials. Brazilian oral research, 32(suppl 1), e73.

Estrela, C., Pécora, J. D., Estrela, C., Guedes, O. A., Silva, B., Soares, C. J., & Sousa-Neto, M. D. (2017). Common Operative Procedural Errors and Clinical Factors Associated with Root Canal Treatment. Brazilian dental journal, 28(2), 179–190.

Estrela, C., Sydney, G. B., Bammann, L. L., & Felippe Júnior, O. (1995). Mechanism of action of calcium and hydroxyl ions of calcium hydroxide on tissue and bacteria. Brazilian dental journal, 6(2), 85–90.

Faraco, I. M., Jr, & Holland, R. (2001). Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dental traumatology : official publication of International Association for Dental Traumatology, 17(4), 163–166.

Goldberg, M., & Smith, A. J. (2004). Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists, 15(1), 13–27.

Gomes-Filho, J. E., Watanabe, S., Cintra, L. T., Nery, M. J., Dezan-Júnior, E., Queiroz, I. O., Lodi, C. S., & Basso, M. D. (2013). Effect of MTA-based sealer on the healing of periapical lesions. Journal of applied oral science : revista FOB, 21(3), 235–242.

Holland, R., de Souza, V., Nery, M. J., Bernabé, o. F., Filho, J. A., Junior, E. D., & Murata, S. S. (2002). Calcium salts deposition in rat connective tissue after the implantation of calcium hydroxide-containing sealers. Journal of endodontics, 28(3), 173–176.

Holland, R., de Souza, V., Nery, M. J., Otoboni Filho, J. A., Bernabé, P. F., & Dezan Júnior, E. (1999). Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. Journal of endodontics, 25(3), 161–166.

Holland, R., Filho, J. A., de Souza, V., Nery, M. J., Bernabé, P. F., & Junior, E. D. (2001). Mineral trioxide aggregate repair of lateral root perforations. Journal of endodontics, 27(4), 281–284.

Holland, R., Mazuqueli, L., de Souza, V., Murata, S. S., Dezan Júnior, E., & Suzuki, P. (2007). Influence of the type of vehicle and limit of obturation on apical and periapical tissue response in dogs' teeth after root canal filling with mineral trioxide aggregate. Journal of endodontics, 33(6), 693–697.

ISO - International Organization for Standardization. (2016). ISO 10993-6: Biological Evaluation of Medical Devices Part 6: Testes for Local Effects after Implantation. https://committee.iso.org/standard/61089.html?browse=tc.

Laurent, P., Camps, J., & About, I. (2012). Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. International endodontic journal, 45(5), 439–448.

Leite, M. L., Soares, D. G., Anovazzi, G., Anselmi, C., Hebling, J., & de Souza Costa, C. A. (2021). Fibronectin-loaded Collagen/Gelatin Hydrogel Is a Potent Signaling Biomaterial for Dental Pulp Regeneration. Journal of endodontics, 47(7), 1110–1117.

Mizuno, M., & Banzai, Y. (2008). Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. International endodontic journal, 41(11), 933–938.

Moradi, S., Saghravanian, N., Moushekhian, S., Fatemi, S., & Forghani, M. (2015). Immunohistochemical Evaluation of Fibronectin and Tenascin Following Direct Pulp Capping with Mineral Trioxide Aggregate, Platelet-Rich Plasma and Propolis in Dogs' Teeth. Iranian endodontic journal, 10(3), 188–192.

Nakashima M. (2005). Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine & growth factor reviews, 16(3), 369–376.

Piva, E., Tarquínio, S B., Demarco, F F., Silva, A F., & De Araújo, V C. (2006). Immunohistochemical expression of bronectin and tenascin a er direct pulp capping with calcium hydroxide. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontology,102, e66-e71.

Singh,H., Kaur, M., Markan, S., & Kapoor, P. (2014). Biodentine: A promising dentin substitute. Journal of Interdisciplinary Medicine and Dental Science, 2, 140.

Solanki, N. P., Venkappa, K. K., & Shah, N. C. (2018). Biocompatibility and sealing ability of mineral trioxide aggregate and biodentine as root-end filling material: A systematic review. Journal of conservative dentistry : JCD, 21(1), 10–15.

Tabarsi, B., Pourghasem, M., Moghaddamnia, A., Shokravi, M., Ehsani, M., Ahmadyar, M., & Asgary, S. (2012). Comparison of skin test reactivity of two endodontic biomaterials in rabbits. Pakistan journal of biological sciences : PJBS, 15(5), 250–254.

Thesleff, I., Vaahtokari, A., & Partanen, A. M. (1995). Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. The International journal of developmental biology, 39(1), 35–50.

Torneck, CD. (1966). Reaction of rat connective tissue to polyethylene tube implants part I. Cirurgia Oral, Medicina Oral, Patologia Oral, 21(3), 379-87.

Tziafas, D., Alvanou, A., Panagiotakopoulos, N., Smith, A. J., Lesot, H., Komnenou, A., & Ruch, J. V. (1995). Induction of odontoblast-like cell differentiation in dog dental pulps after in vivo implantation of dentine matrix components. Archives of oral biology, 40(10), 883–893.

Valentim, D., Bueno, CRE., Marques, VAS., Benetti,F., Vasques, AMV., Cury, MTS., Silva, ACR., Jacinto, RC., Sivieri-Araujo, G., Cintra, LTA., & Dezan-Junior, E. (2021). Biocompatibility assessment of bioceramic repair cements: An in vivo study in wistar rats. Research, Society and Development, 10(7), e1610714422.

Wang Z. (2015). Bioceramic materials in endodontics. Endodontic Topics, 32(1), 3-30.

Yoshiba, N., Yoshiba, K., Iwaku, M., Nakamura, H., & Ozawa, H. (1994). A confocal laser scanning microscopic study of the immunofluorescent localization of fibronectin in the odontoblast layer of human teeth. Archives of oral biology, 39(5), 395–400.

Zarrabi, M. H., Javidi, M., Jafarian, A. H., & Joushan, B. (2011). Immunohistochemical expression of fibronectin and tenascin in human tooth pulp capped with mineral trioxide aggregate and a novel endodontic cement. Journal of endodontics, 37(12), 1613–1618.

Publicado

20/08/2021

Cómo citar

VALENTIM, D.; BUENO, C. R. E.; CURY, M. T. S. .; VASQUES, A. M. V.; SILVA , A. C. R. da .; BENETTI, F.; SIVIERI ARAUJO, G. .; JACINTO, R. C.; GOMES-FILHO, J. E. .; ERVOLINO, E. .; CINTRA, L. T. A. .; DEZAN-JUNIOR, E. . Evaluación de la inmunotinción de Fibronectina y Tenascina inducida por la reparación de cementos biocerámicos: un estudio en tejido subcutáneo de ratas wistar. Research, Society and Development, [S. l.], v. 10, n. 10, p. e589101019325, 2021. DOI: 10.33448/rsd-v10i10.19325. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19325. Acesso em: 4 jul. 2024.

Número

Sección

Ciencias de la salud