Avances en los genes de prolificidad o fertilidad en ovejas: una revisión
DOI:
https://doi.org/10.33448/rsd-v10i11.19333Palabras clave:
Genética; Heredabilidad; Razas; Reproducción.Resumen
Los rasgos reproductivos tienen relativamente una heredabilidad baja o media y no muestran una respuesta notable a la selección fenotípica. Por lo tanto, la inclusión de la información genética de los genes asociados a la capacidad reproductiva puede mejorar eficazmente la respuesta de selección. Se han estudiado a escala mundial los principales genes importantes que afectan a la prolificidad y su diversidad genética en diferentes razas de ovejas. En varias razas de ovejas de todo el mundo se han encontrado diferentes mutaciones asociadas a rasgos reproductivos, como la tasa de ovulación y el tamaño de la camada. Una visión general de los estudios sobre los principales genes de la proliferación mostró que algunos alelos pueden expresar diferentes efectos fenotípicos en diferentes razas y, por lo tanto, se necesitan más estudios sobre los efectos de interacción para una mayor comprensión del control genético de la reproducción en las ovejas. En cuanto a la metodología de evaluación de los rasgos de prolificidad, se hace necesaria la aplicación de nuevas tecnologías para encontrar nuevas variantes, lo que es esencial para futuros estudios. La metodología adoptada fue un estudio descriptivo, que dio lugar a una revisión bibliográfica basada en artículos científicos de todo el mundo.
Citas
Abdoli, R., Zamani, P., Deljou, A., & Rezvan, H. (2013). Association of BMPR-1B and GDF9 genes polymorphisms and secondary protein structure changes with reproduction traits in Mehraban ewes. Gene, 524(2), 296–303. https://doi.org/10.1016/j.gene.2013.03.133
Abdoli, R., Zamani, P., Mirhoseini, S. Z., Ghavi Hossein-Zadeh, N., & Nadri, S. (2016). A review on prolificacy genes in sheep. Reproduction in Domestic Animals, 51(5), 631–637. https://doi.org/10.1111/rda.12733
Ahmad, H. I., Liu, G., Jiang, X., Edallew, S. G., Wassie, T., Tesema, B., Yun, Y., Pan, L., Liu, C., Chong, Y., Yu, Z. J., & Jilong, H. (2017). Maximum-likelihood approaches reveal signatures of positive selection in BMP15 and GDF9 genes modulating ovarian function in mammalian female fertility. Ecology and Evolution, July, 8895–8902. https://doi.org/10.1002/ece3.3336
Barakat, I. A. H., Salem, L. M., Daoud, N. M., Khalil, W. K. B., & Mahrous, K. F. (2017). Genetic polymorphism of candidate genes for fecundity traits in Egyptian sheep breeds. Biomedical Research (India), 28(2), 851–857
Bastos, E., Ávila, S., Cravador, A., Renaville, R., Guedes-Pinto, H., & Luis Castrillo, J. (2006). Identification and characterization of four splicing variants of ovine POU1F1 gene. Gene, 382, 12–19. https://doi.org/10.1016/j.gene.2006.05.028
Bedhiaf-Romdhani, S., Djemali, M., Zaklouta, M., & Iniguez, L. (2008). Monitoring crossbreeding trends in native Tunisian sheep breeds. Small Ruminant Research, 74(1–3), 274–278. https://doi.org/10.1016/j.smallrumres.2007.07.008
Bodin, L., Di Pasquale, E., Fabre, S., Bontoux, M., Monget, P., Persani, L., & Mulsant, P. (2007). A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology, 148(1), 393–400. https://doi.org/10.1210/en.2006-0764
Ceko, M. J., Hummitzsch, K., Hatzirodos, N., Bonner, W. M., Aitken, J. B., Russell, D. L., Lane, M., Rodgers, R. J., & Harris, H. H. (2015). X-Ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics, 7(1), 71–82. https://doi.org/10.1039/c4mt00228h
Chu, M. X., Liu, Z. H., Jiao, C. L., He, Y. Q., Fang, L., Ye, S. C., Chen, G. H., & Wang, J. Y. (2007). Mutations in BMPR-IB and BMP-15 genes are associated with litter size in Small Tailed Han sheep (Ovis aries). Journal of Animal Science, 85(3), 598–603. https://doi.org/10.2527/jas.2006-324
Chu, M., Xiao, C., Feng, T., Fu, Y., Cao, G., Fang, L., Di, R., Tang, Q., Huang, D., Ma, Y., Li, K., & Li, N. (2012). Polymorphisms of KiSS-1 and GPR54 genes and their relationships with litter size in sheep. Molecular Biology Reports, 39(3), 3291–3297. https://doi.org/10.1007/s11033-011-1097-3
Davis, G. H., Galloway, S. M., Ross, I. K., Gregan, S. M., Ward, J., Nimbkar, B. V., Ghalsasi, P. M., Nimbkar, C., Gray, G. D., Subandriyo, Inounu, I., Tiesnamurti, B., Martyniuk, E., Eythorsdottir, E., Mulsant, P., Lecerf, F., Hanrahan, J. P., Bradford, G. E., & Wilson, T. (2002). DNA tests in prolific sheep from eight countries provide new evidence on origin of the Booroola (FecB) mutation. Biology of Reproduction, 66(6), 1869–1874. https://doi.org/10.1095/biolreprod66.6.1869
Demars, J., Fabre, S., Sarry, J., Rossetti, R., Gilbert, H., Persani, L., Tosser-Klopp, G., Mulsant, P., Nowak, Z., Drobik, W., Martyniuk, E., & Bodin, L. (2013). Genome-Wide Association Studies Identify Two Novel BMP15 Mutations Responsible for an Atypical Hyperprolificacy Phenotype in Sheep. PLoS Genetics, 9(4). https://doi.org/10.1371/journal.pgen.1003482
Dias, F. C. F., Khan, M. I. R., Adams, G. P., Sirard, M. A., & Singh, J. (2014). Granulosa cell function and oocyte competence: Super-follicles, super-moms and super-stimulation in cattle. Animal Reproduction Science, 149(1–2), 80–89. https://doi.org/10.1016/j.anireprosci.2014.07.016
El-Seedy, A. S., Hashem, N. M., El-Azrak, K. M., Nour El-Din, A. N. M., Ramadan, T. A., Taha, T. A., & Salem, M. H. (2017). Genetic screening of FecB, FecXG and FecXI mutations and their linkage with litter size in Barki and Rahmani sheep breeds. Reproduction in Domestic Animals, 52(6), 1133–1137. https://doi.org/10.1111/rda.13002
Escobar-Chaparro, R. A., Guillén, G., Espejo-Galicia, L. U., Meza-Villalvazo, V. M., Peña-Castro, J. M., & Abad-Zavaleta, J. (2017). qPCR and HRM-based diagnosis of SNPs on growth differentiation factor 9 (GDF9), a gene associated with sheep (Ovis aries) prolificacy. 3 Biotech, 7(3). https://doi.org/10.1007/s13205-017-0837-z
Galloway, S. M., McNatty, K. P., Cambridge, L. M., Laitinen, M. P. E., Juengel, J. L., Jokiranta, T. S., McLaren, R. J., Luiro, K., Dodds, K. G., Montgomery, G. W., Beattie, A. E., Davis, G. H., & Ritvos, O. (2000). Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nature Genetics, 25(3), 279–283. https://doi.org/10.1038/77033
Gholizadeh, M., Rahimi-Mianji, G., Nejati-Javaremi, A., De Koning, D. J., & Jonas, E. (2014). Genomewide association study to detect QTL for twinning rate in Baluchi sheep. Journal of Genetics, 93(2), 489–493. https://doi.org/10.1007/s12041-014-0372-1
Hanrahan, J. P., Gregan, S. M., Mulsant, P., Mullen, M., Davis, G. H., Powell, R., & Galloway, S. M. (2004). Mutations in the Genes for Oocyte-Derived Growth Factors GDF9 and BMP15 Are Associated with Both Increased Ovulation Rate and Sterility in Cambridge and Belclare Sheep (Ovis aries). Biology of Reproduction, 70(4), 900–909. https://doi.org/10.1095/biolreprod.103.023093
Kasiriyan, M. M., Hafezian, S. H., & Hassani, N. (2011). Genetic polymorphism BMP15 and GDF9 genes in Sangsari sheep of Iran. International Journal of Genetics and Molecular Biology, 3(1), 31–34
Khodabakhshzadeh, R., Mohammadabadi, M. R., Esmailizadeh, A. K., Moradi Shahrebabak, H., Bordbar, F., & Ansari Namin, S. (2016). Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep. Polish Journal of Veterinary Sciences, 19(2), 281–289. https://doi.org/10.1515/pjvs-2016-0035
Lassoued, N., Benkhlil, Z., Woloszyn, F., Rejeb, A., Aouina, M., Rekik, M., Fabre, S., & Bedhiaf-Romdhani, S. (2017). FecX Bar a Novel BMP15 mutation responsible for prolificacy and female sterility in Tunisian Barbarine Sheep. BMC Genetics, 18(1), 1–10. https://doi.org/10.1186/s12863-017-0510-x
Li, Y. X., Zhang, J., Qian, Y., Meng, C. H., Wang, H. L., Tao, X. J., Zhong, S., Cao, S. X., & Li, Q. F. (2015). Molecular characterization, expression, polymorphism of NR5A2 and its relationship with litter size in Hu sheep. Genetics and Molecular Research, 14(4), 12765–12775. https://doi.org/10.4238/2015.October.19.20
Mahdavi, M., Nanekarani, S., & Hosseini, S. D. (2014). Mutation in BMPR-IB gene is associated with litter size in Iranian Kalehkoohi sheep. Animal Reproduction Science, 147(3–4), 93–98. https://doi.org/10.1016/j.anireprosci.2014.04.003
Martinez-Royo, A., Jurado, J. J., Smulders, J. P., Martí, J. I., Alabart, J. L., Roche, A., Fantova, E., Bodin, L., Mulsant, P., Serrano, M., Folch, J., & Calvo, J. H. (2008). A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep. Animal Genetics, 39(3), 294–297. https://doi.org/10.1111/j.1365-2052.2008.01707.x
McNatty, K. P., Galloway, S. M., Wilson, T., Smith, P., Hudson, N. L., O’Connell, A., Bibby, A. H., Heath, D. A., Davis, G. H., Hanrahan, J. P., & Juengel, J. L. (2005). Physiological effects of major genes affecting ovulation rate in sheep. Genetics Selection Evolution, 37(SUPPL. 1), 25–38. https://doi.org/10.1051/gse:2004029
Meistertzheim, A.-L., Meistertzheim, A.-L., Calves, I., Artigaud, S., Friedman, C. S., Paillard, C., Laroche, J., & Ferec, C. (2012). High Resolution Melting Analysis for fast and cheap polymorphism screening of marine populations. Protocol Exchange. https://doi.org/10.1038/protex.2012.015
Miao, X., & Qin, Q. L. X. (2015). Genome-wide transcriptome analysis of mRNAs and microRNAs in Dorset and Small Tail Han sheep to explore the regulation of fecundity. Molecular and Cellular Endocrinology, 402, 32–42. https://doi.org/10.1016/j.mce.2014.12.023
Moghadaszadeh, M., Mohammadabadi, M., & Koshkoieh, A. E. (2015). Association of exon 2 of BMP15 gene with the litter size in the Raini Cashmere goat. Genetics in the Third Millennium, 13(3), 4062–4067
Monteagudo, L. V., Ponz, R., Tejedor, M. T., Laviña, A., & Sierra, I. (2009). A 17 bp deletion in the Bone Morphogenetic Protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed. Animal Reproduction Science, 110(1–2), 139–146. https://doi.org/10.1016/j.anireprosci.2008.01.005
Mulsant, P., Lecerf, F., Fabre, S., Schibler, L., Monget, P., Lanneluc, I., Pisselet, C., Riquet, J., Monniaux, D., Callebaut, I., Cribiu, E., Thimonier, J., Teyssier, J., Bodin, L., Cognié, Y., Chitour, N., & Elsen, J. M. (2001). Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Mérino ewes. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 5104–5109. https://doi.org/10.1073/pnas.091577598
Nicol, L., Bishop, S. C., Pong-Wong, R., Bendixen, C., Holm, L. E., Rhind, S. M., & McNeilly, A. S. (2009). Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction, 138(6), 921–933. https://doi.org/10.1530/REP-09-0193
Ozmen, O., Seker, I., Ertugrul, O., Ozkan, E., & Tekin, N. (2011). Prolactin receptor (PRLR) gene polymorphism in Chios, White Karaman and Awassi sheep breeds. Archives Animal Breeding, 54(4), 381–390. https://doi.org/10.5194/aab-54-381-2011
Polley, S., De, S., Brahma, B., Mukherjee, A., P.V., V., Batabyal, S., Arora, J. S., Pan, S., Samanta, A. K., Datta, T. K., & Goswami, S. L. (2010). Polymorphism of BMPR1B, BMP15 and GDF9 fecundity genes in prolific Garole sheep. Tropical Animal Health and Production, 42(5), 985–993. https://doi.org/10.1007/s11250-009-9518-1
Reed, G. H., Kent, J. O., & Wittwer, C. T. (2007). High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics, 8(6), 597–608. https://doi.org/10.2217/14622416.8.6.597
Roy, J., Polley, S., De, S., Mukherjee, A., Batabyal, S., Pan, S., Brahma, B., Datta, T. K., & Goswami, S. L. (2011). Polymorphism of fecundity genes (fecb, fecx, and fecg) in the indian bonpala sheep. Animal Biotechnology, 22(3), 151–162. https://doi.org/10.1080/10495398.2011.589239
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108. https://doi.org/10.1038/nprot.2008.73
Silva, B. D. M., Castro, E. A., Souza, C. J. H., Paiva, S. R., Sartori, R., Franco, M. M., Azevedo, H. C., Silva, T. A. S. N., Vieira, A. M. C., Neves, J. P., & Melo, E. O. (2011). A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep. Animal Genetics, 42(1), 89–92. https://doi.org/10.1111/j.1365-2052.2010.02078.x
Souza, C. J. H., MacDougall, C., Campbell, B. K., McNeilly, A. S., & Baird, D. T. (2001). The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. Journal of Endocrinology, 169(2), 3–8. https://doi.org/10.1677/joe.0.169R001
Souza, C. J. H., McNeilly, A. S., Benavides, M. V., Melo, E. O., & Moraes, J. C. F. (2014). Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Animal Genetics, 45(5), 732–739. https://doi.org/10.1111/age.12190
Sudhakar, A., Rajendran, R., & Rahumathulla, P. S. (2013). Detection of Booroola (FecB) mutation in Indian sheep--Nilagiri. Small Ruminant Research, 113(1), 55–57. https://doi.org/10.1016/j.smallrumres.2013.02.012
Våge, D. I., Husdal, M., Kent, M. P., Klemetsdal, G., & Boman, I. A. (2013). A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC Genetics, 14, 1–8. https://doi.org/10.1186/1471-2156-14-1
Wilson, T., Wu, X. Y., Juengel, J. L., Ross, I. K., Lumsden, J. M., Lord, E. A., Dodds, K. G., Walling, G. A., McEwan, J. C., O’Connell, A. R., McNatty, K. P., & Montgomery, G. W. (2001). Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biology of Reproduction, 64(4), 1225–1235. https://doi.org/10.1095/biolreprod64.4.1225
Zuo, B., Qian, H., Wang, Z., Wang, X., Nisa, N., Bayier, A., Ying, S., Hu, X., Gong, C., Guo, Z., & Wang, F. (2013). A study on BMPR-IB genes of Bayanbulak sheep. Asian-Australasian Journal of Animal Sciences, 26(1), 36–42. https://doi.org/10.5713/ajas.2012.12238
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Marilene dos Santos Maciel; Apolônio Gomes Ribeiro; Paulo Otávio Silva Calvacante; Chrislanne Barreira de Macêdo Carvalho; Jéssica Berly Moreira Marinho; Gabriel Miranda Macambira; Helia Sharlane de Holanda Oliveira; Dayane Albuquerque da Silva; Ana Carolina Ferreira dos Santos; Diana Valadares Pessoa; Gabriela Duarte Silva; Yanne Cibelle Vieira de Carvalho
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.