Los aceites esenciales una alternativa para el control de las larvas de Anopheles: una revisión

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i11.19384

Palabras clave:

Malaria; Aceites esenciales; Actividad larvicida; Anopheles.

Resumen

Los aceites esenciales se han utilizado a menudo como una herramienta alternativa para el control de larvas y mosquitos de varios géneros. El género Anopheles, conocido como transmisor de la malaria, ha sido probado utilizando aceites esenciales obtenidos de diferentes especies de plantas. Estos mosquitos portan como parásitos el protozoo del género Plasmodium, que es el responsable de provocar la enfermedad. Debido a la necesidad de conocer cada vez más alternativas para el control de estos vectores, este estudio tuvo como objetivo realizar un relevamiento del uso de aceites esenciales de diferentes especies en el combate al vector de la malaria, es decir, en mosquitos del género Anopheles. actuando directamente sobre las larvas de estos mosquitos. Esta encuesta se realizó utilizando las bases de datos Science Direct y Scielo, seleccionando trabajos de los años 2010 a 2020, analizando así su título y objetivo. En este trabajo se evaluaron los aceites esenciales de 33 especies vegetales pertenecientes a 16 familias diferentes frente a larvas de mosquito de este género, y se evaluó la efectividad del aceite esencial con base en el valor de LC50. Por ello, este artículo destaca la gran relevancia del uso y efectividad de los aceites esenciales en el control de los mosquitos Anopheles.

Citas

Afolabi, O. J., Simon-Oke, I. A., Elufisan, O. O. & Oniya, M. O. (2018). Adulticidal and repellent activities of some botanical oils against malaria mosquito: Anopheles gambiae (Diptera: Culicidae). Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 135-138. doi: https://doi.org/10.1016/j.bjbas.2017.09.004

Akgul A. (1989). Volatile oil composition of sweet basil (Ocimum basilicum L.) cultivating in Turkey. Nahrung, 33, 87-88.

doi: https://doi.org/10.1002/food.19890330129

Alshebly, M. M., AlqahtaniL, F. S., Govindarajan, M., Gopinath, K., Vijayan, P. & Benelli, G. (2016). Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicology and environmental safety, 137, 149-157. doi: 10.1016 / j.ecoenv.2016.11.028

Ayinde, A. A., Morakinyo, O. M. & Sridhar, M. K. C. (2020). Repellency and larvicidal activities of Azadirachta indica seed oil on Anopheles gambiae in Nigeria. Heliyon, 6(5), e03920. doi: 10.1016/j.heliyon.2020.e03920.

Barik, T. K. (2015) Antimalarial drug: from its development to deface. Current Drug Discovery Technologies, 12(4), 225-228. doi: 10.2174 / 1570163812666150907100019.

Bunrathep S., Palanuvez C. & Ruangrungsi N. (2007). Chemical composition and antioxidative activities of essential oils from four Ocimum species endemic to Thailand. J Health Res., 21, 201-206. Recuperado de https://he01.tci-thaijo.org/index.php/jhealthres/article/view/154127/112179

Carovié-Stanko, K., Liber, Z., Politeo, O., Strikic, F., Kolak, I., Milos, M. & Satovic, Z. (2011). Molecular and chemical characterization of the most widespread Ocimum species. Plant Systematics and Evolution, 294(3), 253-262. doi: https://doi.org/10.1007/s00606-011-0471-x

Cheng, S. S., Chang, H. T., Chang, S. T., Tsai, K. H. & Chen, W. J. (2003). Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol., 89(1), 99–102. doi: 10.1016 / s0960-8524 (03) 00008-7

Corrêa, J. C. R. & Salgado, H. R. N. (2011). Atividade inseticida das plantas e aplicações: revisão. Revista Brasileira de Plantas Medicinais, 13(4), 500-506. doi: http://dx.doi.org/10.1590/S1516-05722011000400016

David, J. P., Pautou, M. P. & Meyran J. C. (2000). Differential Toxicity of leaf litter to dipteran larvae of mosquito development sites. J. Invertebr. Pathol., 75, 9–18. doi: 10.1006/jipa.1999.4886

Dargahi, L., Razavi-Azarkhiavi, K., Ramezani, M., Abaee, M. R. & Behravan, J. (2014). Insecticidal activity of the essential oil of Thymus transcaspicus against Anopheles stephensi. Asian Pacific Journal of Tropical Biomedicine, 4, 589-591. doi: 10.12980/APJTB.4.2014APJTB-2014-0077

El-Akhal, F., Lalami, A. E. O. & Guemmouh, R. (2015). Larvicidal activity of essential oils of Citrus sinensis and Citrus aurantium (Rutaceae) cultivated in Morocco against the malaria vector Anopheles labranchiae (Diptera: Culicidae). Asian Pacific Journal of Tropical Disease, 5(6), 458-462. doi: 10.1016 / S2222-1808 (15) 60815-5

Estrela, C. (2018). Metodologia Científica: Ciência, Ensino, Pesquisa. (3ª ed.), Editora Artes Médicas.

Gokhale, M. D., Paingankar, M. S. & Dhaigude, S. D. (2013). Comparison of biological attributes of Culex quinquefasciatus (Diptera: Culicidae) populations from India. ISRN Entomology. doi: https://doi.org/10.1155/2013/451592

Gomes, A. P., Vitorino, R. R., Costa, A. P., Mendonça, E. G., Oliveira, M. G. A. & Siqueira-Batista, R. (2011). Malária grave por Plasmodium falciparum. Revista Brasileira de Terapia Intensiva, 23(3), 358-369. doi: https://doi.org/10.1590/S0103-507X2011000300015

Govindarajan, M. (2010). Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pacific Journal of Tropical Medicine, 3(11), 874-877. doi: https://doi.org/10.1016/S1995-7645(10)60210-6

Govindarajan, M. (2011). Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine, 4(2), 106-111. doi: 10.1016 / S1995-7645 (11) 60047-3

Govindarajan, M., Rajeswary, M., Hoti, S. L. & Benelli, G. (2016). Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Research in Veterinary Science, 104, 77-82. doi: 10.1016 / j.rvsc.2015.11.011

Govindarajan, M., Sivakumar, R., Rajeswary, M. & Yogalakshmi, K. (2013). Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Experimental parasitology, 134(1), 7-11.

doi: 10.1016/j.exppara.2013.01.018.

Govindarajan, M., Rajeswary, M., Senthilmurugan, S., Vijayan, P., Alharbi, N. S., Kadaikunnan, S. & Benelli, G. (2018). Larvicidal activity of the essential oil from Amomum subulatum Roxb.(Zingiberaceae) against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae), and non-target impact on four mosquito natural enemies. Physiological and Molecular Plant Pathology, 101, 219-224. doi: https://doi.org/10.1016/j.pmpp.2017.01.003

Gurunathan, A., Senguttuvan, J. & Paulsamy, S. (2016). Evaluation of mosquito repellent activity of isolated oleic acid, eicosyl ester from Thalictrum javanicum. Indian Journal of Pharmaceutical Sciences 78, 103–110. doi: 10.4103 / 0250-474x.180259

Karunamoorthi, K., Girmay, A. & Fekadu, S. (2014). Larvicidal efficacy of Ethiopian ethnomedicinal plant Juniperus procera essential oil against Afrotropical malaria vector Anopheles arabiensis (Diptera: Culicidae). Asian Pacific journal of tropical biomedicine, 4, S99-S106. doi: 10.12980 / APJTB.4.2014C687

Kishore, N., Mishra, B. B., Tiwari, V. K., Tripathi, V. & Lall, N. (2014). Natural products as leads to potential mosquitocides. Phytochemistry Reviews, 13 (3), 587-627. doi: https://doi.org/10.1007/s11101-013-9316-2

Kyarimpa, C. M., Böhmdorfer, S., Wasswa, J., Kiremire, B. T., Ndiege, I. O. & Kabasa, J. D. (2014). Essential oil and composition of Tagetes minuta from Uganda Larvicidal activity on Anopheles gambiae. Industrial Crops and Products, 62, 400-404. Doi: https://doi.org/10.1016/j.indcrop.2014.09.006

Lopes, G. (2019). Anopheles gambiae no Brasil: antecedentes para um “alastramento silencioso”, 1930-1932. Hist. cienc. saude-Manguinhos, 26(3). doi: https://doi.org/10.1590/S0104-59702019000300006

Louis, M. L. M., Pushpa, V., Balakrishna, K. & Ganesan, P. (2020). Mosquito larvicidal activity of Avocado (Persea americana Mill.) unripe fruit peel methanolic extract against Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. South African Journal of Botany, 133, 1-4. doi: https://doi.org/10.1016/j.sajb.2020.06.020

Lucia A, Gonzalez AP, Saccacini E, Licastro S, Zerba E. & Masuh H. (2007). Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on A. Aegypti larvae. J Am Mosq Control Assoc, 23, 293-303. doi: 10.2987 / 8756-971X (2007) 23 [299: LEOEGE] 2.0.CO; 2

Maheswaran, R. & Ignacimuthu, S. (3013). Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicology and environmental safety, 97, 26-31. doi: 10.1016 / j.ecoenv.2013.06.028

Mahnaz, K., Alireza, F., Hassan, V., Mahdi, S., Reza, A. M. & Abbas, H. (2012). Larvicidal activity of essential oil and methanol extract of Nepeta menthoides against malaria vector Anopheles stephensi. Asian Pacific Journal of Tropical Medicine, 5(12), 962-965. doi: 10.1016 / S1995-7645 (12) 60182-5

Matasyoh, J. C., Wathuta, E. M., Kariuki, S. T. & Chepkorir, R. (2011). Chemical composition and larvicidal activity of Piper capense essential oil against the malaria vector, Anopheles gambiae. Journal of Asia-Pacific Entomology, 14(1), 26-28. doi:

1016 / j.aspen.2010.11.005

Mathalaimuth, B., Shanmugam, D., Kovendan, K., Kadarkarai, M., Jayapal, G. & Benelli, G. (2017). Coleus aromaticus leaf extract fractions: a source of novel ovicides, larvicides and repellents against Anopheles, Aedes and Culex mosquito vectors?. Process Safety and Environmental Protection, 106, 23-33. doi: https://doi.org/10.1016/j.psep.2016.12.003

Mboera, L. E. G., Rumisha, S. F., Lyimo, E. P., Chiduo, M. G., Mangu, C. D., Mremi, I. R., Kumalija, C. J., Joachim, C., Kishamawe, C., Massawe, I. S., Matemba, L. E., Evord Kimario, E., Bwana, V. M. & Mkwashapi, D. M. (2018). Cause-specific mortality patterns among hospital deaths in Tanzania, 2006-2015. PloS one , 13 (10), e0205833. doi: https://doi.org/10.1371/journal. pone.0205833

Medhi, S. M., Reza, S., Mahnaz, K., Reza, A. M., Abbas, H., Fatemeh, M. & Hassan, V. (2010). Phytochemistry and larvicidal activity of Eucalyptus camaldulensis against malaria vector, Anopheles stephensi. Asian Pacific Journal of Tropical Medicine, 3(11), 841-845. doi: https://doi.org/10.1016/S1995-7645(10)60203-9

Nandita C., Subrata L. & Goutam C. (2008). Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves. BMC Complement Altern Med., 8:62. doi: 10.1186 / 1472-6882-8-62

OMS. (2020). WHO World Report on Malaria 2019 OMS.

OMS. (2015). WHO World Report on Malaria, OMS.

Osanloo, M., Amani, A., Sereshti, H., Abai, M. R., Esmaeili, F. & Sedaghat, M. M. (2017). Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Industrial Crops and Products, 109, 214-219. doi: https://doi.org/10.1016/j.indcrop.2017.08.037

Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial crops and products, 76, 174-187. doi: https://doi.org/10.1016/j.indcrop.2015.06.050

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. UFSM

Rajkumar, S., Jebanesan, A. & Nagarajan, R. (2011). Effect of leaf essential oil of Coccinia indica on egg hatchability and different larval instars of malarial mosquito Anopheles stephensi. Asian Pacific Journal of Tropical Medicine, 4(12), 948-951. doi: 10.1016 / S1995-7645 (11) 60224-1

Rey D., Cuany A., Pautou M. & Meyran J. (1999) Differential sensitivity of mosquito taxa to vegetable tannins. J. Chem. Ecol., 25, 537–548. doi: 10.1023/A:1020953804114

Rosa, I. M. S., Trajano, I. L. O., Sá, A. F. C. M., Moura, L. V. M., Barros, M. C.; Marques Jr., D. V.; Fonseca, R. N. M. & Marques, C. P. C. (2020). Epidemiologia da Malária no Brasil e resultados parasitológicos, de 2010 a 2019. Brazilian Journal of health Review, 3(5), 11484-11495. doi: https://doi.org/10.34119/bjhrv3n5-010

Schaffner, F., Bellini, R., Petric, D., Scholte, E. J., Zeller, H. & Rakotoarivony, L. M. (2013). Development of guidelines for the surveillance of invasive mosquitoes in Europe. Parasites & vectors, 6(1), 209. doi: https://doi.org/10.1186/1756-3305-6-209

Scott, T. W. & Morrison, A. C. (2010). Longitudinal field studies will guide a paradigm shift in dengue prevention. In Vector biology, ecology and control, 139-161. Springer, Dordrecht. doi: 10.1007 / 978-90-481-2458-9_10

Sinka, M. E., Bangs, M. J., Manguin, S. et al. (2011). The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasites Vectors, 4, 89. doi: https://doi.org/10.1186/1756-3305-4-89

Simas, N. K.; Lima, E. C., Conceição, S. R. et al. (2004). Produtos naturais para o controle da transmissão da dengue: atividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilterpenóides. Química Nova, 27 (01), 46-49. doi: https://doi.org/10.1590/S0100-40422004000100009

Su, T. & Mulla, M. S. (1998). Antifeedancy of neem products containing Azadirachtin against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J. Vector Ecol., 23 (2), 114–122. Recuperado de https://pubmed.ncbi.nlm.nih.gov/9879068/

Su, T. & Mulla, M. S. (1998). Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera; Culicidae). J. Am. Mosq. Contr. Assoc., 14, 204–209. Recuperado de https://www.biodiversitylibrary.org/content/part/JAMCA/JAMCA_V14_N2_P204-209.pdf

Vatandoost, H., Dehkordi, A. S., Sadeghi, S. M. T., Davari, B., Karimian, F., Abai, M. R. & Sedaghat, M. M. (2012). Identification of chemical constituents and larvicidal activity of Kelussia odoratissima Mozaffarian essential oil against two mosquito vectors Anopheles stephensi and Culex pipiens (Diptera: Culicidae). Experimental parasitology, 132(4), 470-474. doi: 10.1016 / j.exppara.2012.09.010.

Verma, R. S., Padalia, R. C., Chauhan, A. & Thul, S. T. (2013). Exploring compositional diversity in the essential oils of 34 Ocimum taxa from Indian flora. Industrial Crops and Products, 45, 7–19, 2013. doi: 10.1016 / j.indcrop.2012.12.005

Vianna, J. S. (2009). Caracterização anatômica, morfológica e química de quimiotipos de Ocimum gratissimum Lineu. 78p. (Mestrado em Ciências Agrárias) – Universidade de Brasília, Faculdade de Agronomia e Veterinária, Brasília. Recuperado de https://repositorio.unb.br/bitstream/10482/4469/3/2009_JulianaSantosVianna.pdf

Vieira, R. F., Grayer, R. J., Paton, A. & Simon, J. E. (2001). Genetic diversity of Ocimum gratissimum L. based on volatile oil constituents, flavonoids and RAPD markers. Biochemical Systematics and Ecology, 29(3), 287-304. doi: 10.1016 / s0305-1978 (00) 00062-4.

Vitali, L. A., Beghelli, D., Nya, P. C. B., Bistoni, O., Cappellacci, L., Damiano, S., Lupidi, G., Maggi, F., Orsomando, G., Papa, F., Petrelli, D., Petrelli, R., Quassinti, L., Majid, L. S., Zadeh, M. & Bramucci, M. (2016). Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arabian Journal of Chemistry, 9(6), 775-786. doi: https://doi.org/10.1016/j.arabjc.2015.06.002

Yogananth, N., Anuradha, V., Ali, M. Y. S., Muthezhilan, R., Chanthuru, A. & Prabu, M. M. (2015). Chemical properties of essential oil from Rhizophora mucronata mangrove leaf against malarial mosquito Anopheles stephensi and filarial mosquito Culex quinquefasciatus. Asian Pacific Journal of Tropical Disease, 5, 67-S72. doi: https://doi.org/10.1016/S2222-1808(15)60859-3

Younoussa, L., Nukenine, E. N., Danga, S. P. Y. & Esimone, C. O. (2016) Repellent activity of the creams formulated from Annona senegalensis and Boswellia dalzielii leaf fractions and essential oils against Anopheles gambiae (Diptera: Culicidae). Asian Pacific Journal of Tropical Disease, 6(12) 973-978. doi: 10.1016 / S2222-1808 (16) 61167-2

Zhu, L. & Tian, Y. J. (2011). Chemical composition and larvicidal effects of essential oil of Blumea martiniana against Anopheles anthropophagus. Asian Pacific Journal of Tropical Medicine, 4(5), 371-374. doi: https://doi.org/10.1016/S1995-7645(11)60106-5

Zollo, P. H, Biyiti, L., Tchoumbougnang, F., Menut, C., Lamaty, C. & Bouchet, P.H. (1998). Aromatic plants of tropical Africa. Part XXXII. Chemical composition and antifungal activity of thirteen essential oils from aromatic plants of Cameroon. Flavour Frag J., 13, 107-114. doi: 10.1002/(SICI)1099-1026(199803/04)

Publicado

22/08/2021

Cómo citar

BEZERRA, A. L. F. M. .; SILVA , M. da S. da .; PINHEIRO, E. B. F. . Los aceites esenciales una alternativa para el control de las larvas de Anopheles: una revisión. Research, Society and Development, [S. l.], v. 10, n. 11, p. e37101119384, 2021. DOI: 10.33448/rsd-v10i11.19384. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19384. Acesso em: 23 nov. 2024.

Número

Sección

Revisiones