Fotobiomodulación de aspirado de médula ósea fresca para terapia regenerativa
DOI:
https://doi.org/10.33448/rsd-v10i11.19545Palabras clave:
Supervivencia celular; Médula ósea; Células madre; Terapia con láser de bajo nivel; Ratas.Resumen
El uso de células madre mesénquimas y la terapia con láser de bajo nivel (LLLT) se han estudiado ampliamente para promover la curación ósea. Evaluar el efecto de la fotobiomodulación sobre el número total de células (NTC) y la viabilidad celular (VC) del aspirado de médula ósea fresca (AMO). Se recogió BMA de fémur de 10 ratas adultas y se obtuvo una concentración de células de 1 x 107 células/ml. La suspensión celular se depositó en placas de cultivo celular de 96 pocillos y se distribuyó en grupos: 1) RPMI, control positivo; 2) Agua destilada, control negativo; 3) láser rojo (LR); 4) Láser infrarrojo (LIR). Los grupos LR e LIR recibieron la solicitud LLLT inmediatamente después de la incubación. Las células se incubaron durante 24 h. El NTC y el VC se evaluaron mediante el ensayo de azul tripán después de 1, 3, 6, 10 y 24 h de incubación. La distribución de los datos se verificó mediante la prueba de Shapiro-Wilk. Se utilizó la prueba de Kruskal-Wallis para las comparaciones entre grupos e intra-grupos (p <0,05). NTC: después de 1 y 3 h, los grupos LR e LIR presentaron NTC significativamente mayor que el Grupo Agua; después de 6 y 10 h, los grupos RPMI, LR e LIR presentaron un NTC significativamente mayor que el Grupo Agua. VC: después de 1 h, los grupos LR e LIR mostraron un porcentaje significativamente mayor de VC que el Grupo Agua; después de 3, 6 y 10 h, todos los grupos presentaron un porcentaje significativamente mayor de VC que el Grupo Agua. Se puede concluir que la LLLT mejoró el número y la viabilidad de las células de la médula ósea fresca.
Citas
Bara, J. J., Richards, R. G., Alini, M. & Stoddart, M. J. (2014). Concise review: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells, 32, 1713-1723.
Burastero, G., Scarfì, S., Ferraris, C., Fresia, C., Sessarego, N., Fruscione, F., Monetti, F., Scarfò, F., Schupbach, P., Podestà, M., Grappiolo, G. & Zocchi, E. (2010). The association of human mesenchymal stem cells with BMP-7 improves bone regeneration of critical-size segmental bone defects in athymic rats. Bone, 47, 117-126.
Eduardo, F. P., Bueno, D. F., De Freitas, P. M., Marques, M. M., Passos-Bueno, M. R., Eduardo, C. De P. & Zatz, M. (2008). Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med, 40, 433-438.
Fekrazad, R., Asefi, S., Eslaminejad, M. B., Taghiar, L., Bordbar, S. & Hamblin, M. R. (2019). Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci, 34, 115-126.
Hou, J. F., Zhang, H., Yuan, X., Li, J., Wei, Y. J. & Hu, S. S. (2008). In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med, 40, 726-733.
Houreld, N. N., Masha, R. & Abrahamse, H. (2012). Low intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Lasers Surg Med, 44, 429-434.
Kim, K. L., Han, D. K., Park, K., Song, S. H., Kim, J. Y., Kim, J. M., Ki, H. Y., Yie, S. W., Roh, C. R., Jeon, E. S., Kim, D. K. & Suh W. (2009). Enhanced dermal wound neovascularization by targeted delivery of endothelial progenitor cells using an RGD-g-PLLA scaffold. Biomaterials, 30, 3742-3748.
Kraus, K. H. & Kirker-Head, C. (2006). Mesenchymal stem cells and bone regeneration. Vet Surg, 35, 232-242.
Maria, O. M., Khosravi, R., Mezey, E. & Tran, S. D. (2007). Cells from bone marrow that evolve into oral tissues and their clinical applications. Oral Diseases, 3, 11-16.
Martins, C. M., Hamanaka, E. F., Hoshida, T. Y., Sell, A. M., Hidalgo, M. M., Silveira, C. S. & Poi, W. R. (2016). Dragon's Blood Sap (Croton Lechleri) As Storage Medium For Avulsed Teeth: In Vitro Study Of Cell Viability. Braz Dent J, 27, 751-756.
Matsumoto, T., Kawamoto, A., Kuroda, R., Ishikawa, M., Mifune, Y., Iwasaki, H., Miwa, M., Horii, M., Hayashi, S., Oyamada, A., Nishimura, H., Murasawa, S., Doita, M., Kurosaka, M. & Asahara, T. (2006). Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol, 169, 1440-1457.
Nagata, M. J., Santinoni, C. S., Pola, N. M., De Campos, N., Messora, M. R., Bomfim, S. R., Ervolino, E., Fucini, S. E., Faleiros, P. L., Garcia, V. G. & Bosco, A. F. (2013). Bone marrow aspirate combined with low-level laser therapy: A new therapeutic approach to enhance bone healing. J Photochem Photobiol B, 121, 6-14.
Ntege, E. H., Sunami, H. & Shimizu, Y. (2020). Advances in regenerative therapy: A review of the literature and future directions. Regenerative Therapy, 14, 136-153.
Paulo Zambon, J., Atala, A., Yoo, J. J. (2020). Methods to generate tissue-derived constructs for regenerative medicine applications. Methods, 171, 3-10.
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143-147.
Santinoni, C. S., Neves, A. P. C., Almeida, B. F. M., Kajimoto, N. C., Pola, N. M., Caliente, E. A., Belem, E. L. G., Lelis, J. B., Fucini, S. E., Messora, M. R., Garcia, V. G., Bomfim, S. R. M., Ervolino, E. & Nagata, M. J. H. (2021). Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J Biomed Mater Res A, 109(6), 849-858.
Santinoni, C. S., Oliveira, H. F. F., Batista, V. E. S., Lemos, C. A. A., & Verri, F. R. (2017). Influence of low-level laser therapy on the healing of human bone maxillofacial defects: A systematic review. J Photochem Photobiol B, 169, 83-89.
Schneider, R. K., Puellen, A., Kramann, R., Raupach, K., Bornemann, J., Knuechel, R., Pérez-Bouza, A. & Neuss, S. (2010). The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials, 31, 467-480.
Shi, S. & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res, 18, 696-704.
Smiler, D., Soltan, M. & Albitar, M. (2008). Toward the identification of mesenchymal stem cells in bone marrow and peripheral blood for bone regeneration. Implant Dentistry, 17, 236-247.
Suh, W., Kim, K. L., Kim, J. M., Shin, I. S., Lee, Y. S., Lee, J. Y., Jang, H. S., Lee, J. S., Byun, J., Choi, J. H., Jeon, E. S. & Kim, D. K. (2005). Transplantation of endothelial progenitor cells accelerates dermal wound healing with increased recruitment of monocytes/macrophages and neovascularization. Stem Cells, 23, 1571-1578.
Tolar, J., Le Blanc, K., Keating, A., & Blazar, B. R. (2010). Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells, 28, 1446-1455.
Thorwarth, M., Rupprecht, S., Falk, S., Felszeghy, E., Wiltfang, J. & Schlegel, K. A. (2005). Expression of bone matrix proteins during de novo bone formation using a bovine collagen and platelet-rich plasma (PRP)—an immunohistochemical analysis. Biomaterials, 26, 2575-2584.
Vieira, N. M., Brandalise, V., Zucconi, E., Jazedje, T., Secco, M., Nunes, V. A., Strauss, B. E., Vainzof, M. & Zatz, M. (2008). Human multipotent adipose derived stem cells restore dystrophin expression of Duchenne skeletal muscle cells in vitro. Biol Cell, 100, 231-241.
Wang, Q., Yang, Q., Wang, Z., Tong, H., Ma, L., Zhang, Y., Shan, F., Meng, Y., Yuan, Z. (2016). Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton's jelly as sources of cell immunomodulatory therapy. Hum Vaccin Immunother, 12, 85-96.
Woodruff, L. D., Bounkeo, J. M., Brannon, W. M., Dawes, K. S., Barham, C. D., Waddell, D. L. & Enwemeka, C. S. (2004). The efficacy of laser therapy in wound repair: A meta-analysis of the literature. Photomed Laser Surg, 22, 241-247.
Zhang, Z. Y., Teoh, S. H., Chong, M. S., Schantz, J. T., Fisk, N. M., Choolani, M. A., Chan, J. (2009). Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells, 27, 126-137.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Carolina dos Santos Santinoni; Liziana Jancos Calles; Nathália Laís Farias; Thaís Sanches Leite Patara; Bianca Eduarda de Lima Neves; Marcela Lucio Caldeira; Luciana Prado Maia; Christine Men Martins
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.