Uso de microorganismos en el tratamiento anaeróbico de efluentes ricos en nitrógeno y fósforo con vista a la economía circular

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i11.19952

Palabras clave:

Tratamiento anaeróbico; efluentes domésticos; Efluentes domésticos; Vinaza; vinaza; Economía circular.; economía circular

Resumen

El aumento de la población, la creciente urbanización y la industrialización influyen directamente en la generación de efluentes domésticos y industriales que contienen altas cargas de nutrientes como nitrógeno y fósforo, comprometiendo el medio ambiente y la salud pública. Este trabajo tiene como objetivo revisar las características, impactos y ventajas del uso de microorganismos en el tratamiento anaeróbico de efluentes ricos en nitrógeno y fósforo, destacando el potencial uso de insumos de proceso para la economía circular. Para ello, se realizó una revisión de la literatura utilizando palabras clave relacionadas con los mecanismos y supuestos sobre el tema. A partir de las referencias encontradas, fue posible comprender las principales características de los efluentes ricos en nitrógeno y fósforo con énfasis en los pasos del tratamiento anaeróbico, como las ventajas y desventajas del tratamiento, los microorganismos que se pueden utilizar en el proceso, los diferentes tipos de reactores anaeróbicos, además de demostrar cómo los subproductos del tratamiento de aguas residuales en condiciones anaeróbicas pueden situarse en el contexto de la economía circular. Por lo tanto, la digestión anaeróbica es una alternativa de tratamiento biológico de bajo costo para los efluentes ricos en nitrógeno y fósforo, resultando útil para minimizar los impactos negativos asociados con la contaminación ambiental y la exposición a riesgos para la salud pública, así como la oportunidad de uso o reutilización pública de los productos potenciales del proceso, un ejemplo de nutrientes y biogás.

Citas

Abad, V., Avila, R., Vicent, T., & Font, X. (2019). Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresource Technology, 283(February), 10–17. https://doi.org/10.1016/j.biortech.2019.03.064

Acquah, C., Tibbetts, S. M., Pan, S., & Udenigwe, C. (2020). Nutritional quality and bioactive properties of proteins and peptides from microalgae. In Jacob-Lopes, E., Maroneze, M. M., Queiroz, M. I., & Zepka, L.Q (Org), Handbook of Microalgae-Based Processes and Products, (Cap. 19, pp 493-531). India: Elsevier. doi:10.1016/b978-0-12-818536-0.00019-1

Akash, Bora, P., Prakash, D., Durbha, G. K. S. (2020). Biofuel sewage sludge: a review of the approach sustainable transformation of sewage waste into fuel alternative. Fuel, 259, 116262. https://doi.org/10.1016/j.fuel.2019.116262

Almahbashi, N. M. Y., Kutty, S. R. M., Ayoub, M., Noor, A., Salihi, I. U., Al-Nini, A., & Ghaleb, A. A. S. (2021). Optimization of preparation conditions of sewage sludge based activated carbon. Ain Shams Engineering Journal, 12(2), 1175-1182. https://www.sciencedirect.com/science/artic le/pii/S2090447 92030 1945

Al-Rubaye, H., Karambelkar, S., Shivashankaraiah, M. M., & Smith, J. D. (2019). Process Simulation of Two-Stage Anaerobic Digestion for Methane Production. Biofuels, 10(2), 181–191. https://doi.org/10.1080/17597269.2017.1309854

Alves, A. M., de Moura, R. B., Carvalho, A. K. F., de Castro, H. F., & Andrade, G. S. S. (2019). Penicillium citrinum whole-cells catalyst for the treatment of lipid-rich wastewater. Biomass and Bioenergy, 120, 433–438. https://doi.org/10.1016/j.biombioe.2018.12.004

Alvim, C. B., Bes-Piá, M. A., & Mendoza-Roca, J. A. (2020). Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants. Chemical Engineering Journal, 402, 126293. https://doi.org/10.1016/j.cej.2020.126293

Arias, A., Behera, C. R., Feijoo, G., Sin, G., & Moreira, M. T. (2020). Unravelling the environmental and economic impacts of innovative technologies for the enhancement of biogas production and sludge management in wastewater systems. Journal of Environmental Management, 270, 110965. https://doi.org/10.1016/j.jenvman.2020.110965

Awasthi, M. K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R. P., Yan, B., Taherzadeh, M. J. (2020). Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renewable and Sustainable Energy Reviews, 127(May), 109876. https://doi.org/10.1016/j.rser.2020.109876

Balaji, L., Chittoor, J. T., & Jayaraman, G. (2020). Optimization of extracellular lipase production by halotolerant Bacillus sp. VITL8 using factorial design and applicability of enzyme in pretreatment of food industry effluents. Preparative Biochemistry and Biotechnology, 50(7), 708–716. https://doi.org/10.1080/10826068.2020.1734936

Barros, V. G. de, Duda, R. M., Vantini, J. da S., Omori, W. P., Ferro, M. I. T., & Oliveira, R. A. de. (2017). Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria. Bioresource Technology, 244, 371–381. https://doi.org/10.1016/j.biortech.2017.07.106

Bornscheuer, U. T. (2002). Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiology Reviews, 26(1), 73–81. https://doi.org/10.1111/j.1574-6976.2002.tb00599.x

Brasil (2020). Atualiza o marco legal do saneamento básico e dá outras providências. Brasília, Distrito Federal, Brasil. http://www.planalto.gov.br/ccivil_0 3/_ato2019-2022/2020/lei/l14026.htm

Calijuri, M. C., Cunha, D. G. F. (2013). Engenharia ambiental: Conceitos, tecnologia e gestão. Editora Campus.

Carey, D. E., Yang, Y., McNamara, P. J., & Mayer, B. K. (2016). Recovery of agricultural nutrients from biorefineries. Bioresource Technology, 215, 186–198. https://doi.org/10.1016/j.biortech.2016.02.093

Carneiro, M. M., Amaral, D. S., Santos, L. M., Gomes, M. G. Jr., & Pinheiro, T. d. (2018). A Gestão Do Saneamento No Brasil E Sua Relação Com A Gestão De Recursos Hídricos. INOVAE - Journal of Engineering, Architecture and Technology Innovation, 6, 100-116.

Chen, Y. di, Ho, S. H., Nagarajan, D., Ren, N. qi, & Chang, J. S. (2018). Waste biorefineries — integrating anaerobic digestion and microalgae cultivation for bioenergy production. Current Opinion in Biotechnology, 50, 101–110. https://doi.org/10.1016/j.copbio.2017.11.017

Cheng, P., Zhou, C., Chu, R., Chang, T., Xu, J., Ruan, R., Yan, X. (2020). Effect of microalgae diet and culture system on the rearing of bivalve mollusks: Nutritional properties and potential cost improvements. Algal Research, 51, 102076. 10.1016/j.algal.2020.102076

Chernicharo, C. A. L. (2007). Anaerobic reactors (Vol. 3) IWA Publishing.

Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., & Chang, J.-S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332-344. doi:10.1016/j.jtice.2018.05.039

Christofoletti, C. A., Pedro-Escher, J., Correia, J. E., Marinho, J. F. U., Fontanetti, C. S. (2013). Sugarcane vinasse: Environmental implications of its use. Waste Management, 33, 2752-2761. https://doi.org/10.1016/j.wasman.2013.09.005

Chowdhary, P., Bharagava, R. N., Mishra, S., & Khan, N. (2020). Role of Industries in Water Scarcity and Its Adverse Effects on Environment and Human Health. Environmental Concerns and Sustainable Development, 235-256. 10.1007/978-981-13-5889-0_12

Chu, L., & He, W. (2021). Toxic metals in soil due to the land application of sewage sludge in China: Spatiotemporal variations and influencing factors. Science of The Total Environment, 757, 143813.https://doi.org/10.1016/j.scitotenv.2020.143813

Companhia Nacional de Abastecimento (2018). Perspectivas para a agropecuária. 6. Brasília, Brasil. https://www.conab.gov.br/perspectivas-para-a-agropecuaria

Couto, P. T., Brustello, M., Albanez, R., Rodrigues, J. A. D., Zaiat, M., & Ribeiro, R. (2019). Calibration of ADM1 using the Monte Carlo Markov Chain for modeling of anaerobic biodigestion of sugarcane vinasse in an AnSBBR. Chemical Engineering Research and Design, 141, 425–435. https://doi.org/10.1016 /j.cherd.2018.11.014

Del-Bem, L. E. (2018). Xyloglucan evolution and the terrestrialization of green plants. New Phytologist, 219(4), 1150-1153. https://doi.org/10.1111/nph.15191

Diamantis, V., Eftaxias, A., Stamatelatou, K., Noutsopoulos, C., Vlachokostas, C., & Aivasidis, A. (2021). Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes. Renewable Energy, 168, 438–447. https://doi.org/10.1016/j.renene.2020.12.034

Elalami, D., Carrere, H., Monlau, F., Abdelouahdi, K., Oukarroum, A., Barakat, A. (2019). Pre-treatment and co-digestion of wastewater sludge for biogas production: research and recent advances. Renewable and sustainable energy reviews, 144. https://doi.org/10.1016/j.rser.2019.109287

El-Sheekh, M., El-Dalatony, M. M., Thakur, N. & Salama, E. (2021). Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology https://doi.org/10.1007/s13762-021-03270-w

España-Gamboa, E., Mijangos-Cortes, J., Barahona-Perez, L., Dominguez-Maldonado, J., Hernández-Zarate, G., & Alzate-Gaviria, L. (2011). Vinasses: characterization and treatments. Waste Manag, 29, 1235–1250. https://doi.org/10.1177/0734242X10387313

Ferreira, D. C., Graziele, I., Marques, R. C., & Gonçalves, J. (2021). Investment in drinking water and sanitation infrastructure and its impact on waterborne diseases dissemination: The Brazilian case. Science of the Total Environment, 779, 146279. https://doi.org/10.1016/j.scitotenv.2021.146279

Fu, J., Lin, Z., Zhao, P., Wang, Y., He, L., & Zhou, J. (2019). Establishment and efficiency analysis of a single-stage denitrifying phosphorus removal system treating secondary effluent. Bioresource Technology, 288. https://doi.org/10.1016/j.biortech.2019.121520

Garcia-Gozalbes, C. C., Arbib, Z., Perales-Vargas-Machuca, J. A. (2015). Cinéticas de crecimiento y consumo de nutrientes de microalgas en aguas residuales urbanas con diferentes niveles de tratamiento. Tecnología y ciencias del agua, 6(1), 49-68.

Gherghel, A., Teodosiu, C., & De Gisi, S. (2019). A review on wastewater sludge valorisation and its challenges in the context of circular economy. Journal of Cleaner Production, 228, 244–263. https://doi.org/10.1016/j.jclepro.2019.04.240

Gil, A. C. (2002). Como Elaborar Projetos de Pesquisa. (4a ed.), Atlas

Gonçalves, A. L.,Pires, J. C. M., Simões, M. (2016). Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production. Bioresource Technology. 200, 279-286. https://doi.org/10.1016/j.biortech.2015.10.023.

Gradíssimo, D. G.; Mourão, M. M.; Santos, A. V. (2020). Importância do Monitoramento de Cianobactérias e Suas Toxinas em Águas Para Consumo Humano. J. Crim, 9, 15-21

Guerra-Rodríguez, S., Oulego, P., Rodríguez, E., Singh, D. N., & Rodríguez-Chueca, J. (2020). Towards the implementation of circular economy in the wastewater sector: Challenges and opportunities. Water (Switzerland), 12(5). https://doi.org/10.3390/w12051431

Gupta, S., Pawar, S. B., & Pandey, R. A. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. In Science of the Total Environment (Vol. 687, pp. 1107–1126). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.06.115

Iltchenco, J., Almeida, L. G., Beal, L. L., Marconatto, L., dos Anjos Borges, L. G., Giongo, A., & Paesi, S. (2020). Microbial consortia composition on the production of methane from sugarcane vinasse. Biomass Conversion and Biorefinery, 10(2), 299–309. https://doi.org/10.1007/s13399-019-00426-0

Johansen, M. N. (2012). Microalgae: Biotechnology, Microbiology And Energy. Nova Science Publishers, Inc.

Jordão, E. P., & Pessôa, C. A. (2014). Tratamento de esgotos domésticos (7a ed.), ABES.

Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31(8), 1737–1744. https://doi.org/10.1016/j.wasman.2011.03.021

Kapoor, R., Ghosh, P., Kumar, M., Sengupta, S., Gupta, A., Kumar, S. S., & Pant, D. (2020). Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresource Technology, 304(February), 123036. https://doi.org/10.1016/j.biortech.2020.123036

Keucken, A., Habagil, M., Batstone, D., Jeppsson, U., Arnell, M. (2018). Anaerobic Co-Digestion of Sludge and Organic Food Waste—Performance, Inhibition, and Impact on the Microbial Community. Energies. 11, 2325; 10.3390/en11092325.

Kothari, R., Pandey, A. K., Kumar, S., Tyagi, V. v., & Tyagi, S. K. (2014). Different aspects of dry anaerobic digestion for bio-energy: An overview. In Renewable and Sustainable Energy Reviews (39, 174–195). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.07.011

Koutra, E., Tsafrakidou, P., Sakarika, M., & Kornaros, M. (2020). Microalgal biorefinery. In Yousuf, A. (Org), Microalgae cultivation for biofuels production (Cap. 11, pp 163-185). Sylhet, Bangladesh: Elsevier. https://doi.org/10.1016/B978-0-12-817536-1.00011-4

Kim, M & Day, D. (2013). Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology & Biotechnology, 38(7), 803-807. 10.1007/s10295-010-0812-8

Krishnamoorthy, S., Premalatha, M., & Vijayasekaran, M. (2017). Characterization of distillery wastewater – An approach to retrofit existing effluent treatment plant operation with phycoremediation. Journal of Cleaner Production, 148, 735-750. https://doi.org/10.1016/j.jclepro.2017.02.045

Kurniawan, S. B., Ahmad, A., Said, N. S., Imron, M. F., Abdullah, S. R., Othman, A. R., & Hasan, H. A. (2021). Macrophytes as wastewater treatment agents: Nutrient uptake and potential of produced biomass utilization toward circular economy initiatives. Science of The Total Environment, 790. https://doi.org/10.1016/j.scitotenv.2021.148219

Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. In Renewable and Sustainable Energy Reviews (Vol. 34, pp. 491–500). Elsevier Ltd. https://doi.org/10.1016 j.rser.2 014.03.041

Latiff, A. A. A. (2011). Water pollution: the never ending story. Universiti Tun Hussein Onn Malaysia.

Lan, S., Wu, L., Zhang, D., Hu, C. (2015). Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus. 2015. Bioresource Technology, 182, 144-150. https://doi.org/10.1016/j.biortech.2015.02.002.

Leoneti, A. B., Prado, E. L., & Oliveira, S. V. (2011). Saneamento básico no Brasil: considerações sobre investimentos e sustentabilidade para o século XXI. Revista de Administração Pública, 45, 331-348. https://doi.org/10.1590/S0034-76122011000200003

Levine, I. A. (2018). Algae: A way of life and health. In Levine, I. A & Fleurence, J. (Org), Microalgae in Health and Disease Prevention (Cap.1, pp. 1-10). Lewiston, ME: Elsevier. https://doi.org/10.1016/B978-0-12-811405-6.00001-3

Li, X., Yang, C., Zeng, G., Wu, S., Lin, Y., Zhou, Q., Lou, W., Du, C., Nie, L., Zhong, Y., (2020). Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Research, 46, 101804. https://doi.org/10.1016/j.algal.2020.101804

Lima, F. M.; Aquarone, E.; Borzani, W.; Schmidell, W. (2001). Biotecnologia Industrial Vol. III: Processos Fermentativos e Enzimáticos. Blucher.

Lima, A. C. P., Cammarota, M. C., & Gutarra, M. L. E. (2018). Obtaining filamentous fungi and lipases from sewage treatment plant residue for fat degradation in anaerobic reactors. PeerJ, 2018(8). https://doi.org/10.7717/peerj.5368

Liu, J., Liu, X., Gao, L., Xu, S., Chen, X., Tian, H., & Kang, X. (2020). Performance and microbial community of a novel combined anaerobic bioreactor integrating anaerobic baffling and anaerobic filtration process for low-strength rural wastewater treatment. Environmental Science and Pollution Research, 27(15), 18743–18756. https://doi.org/10.1007/s11356-020-08263-9

Lourenço, S. O. (2006). Cultivo de microalgas marinhas: princípios e aplicações. RiMa.

Lourenço, S. O. (2020). Microalgae culture collections, strain maintenance, and propagation. In Jacob-Lopes, E., Maroneze, M.M., Queiroz, M.I., & Zepka, L.Q (Org), Handbook of Microalgae-Based Processes and Products, (Cap. 3, pp 49-84). India: Elsevier. 10.1016/b978-0-12-818536-0.00003-8

Lorentz, J. F., Calijuri, M. L., Assemany, P. P., Alves, W. S., & Pereira, O. G. (2020). Microalgal biomass as a biofertilizer for pasture cultivation: Plant productivity and chemical composition. Journal of Cleaner Production, 276, 124130. https://doi.org/10.1016/j.jclepro.2020.124130

Maceiras, R., Rodríguez, M., Cancela, A., Urréjola, S., & Sánchez, A. (2011). Macroalgae: Raw material for biodiesel production. Applied Energy, 88(10), 3318–3323. doi:10.1016/j.apenergy.2010.11.02

Macura, B., Johannesdottir, S. L., Piniewski, M., Haddaway, N. R., & Kvarnström, E. (2019). Effectiveness of ecotechnologies for recovery of nitrogen and phosphorus from anaerobic digestate and effectiveness of the recovery products as fertilisers: A systematic review protocol. Environmental Evidence, 8(1), 1–9. https://doi.org/10.1186/s13750-019-0173-3

Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., & Okoh, A. I. (2019). Microbial anaerobic digestion: process dynamics and implications from the renewable energy, environmental and agronomy perspectives. International Journal of Environmental Science and Technology, 16(7), 3913–3934. https://doi.org/10.1007/s13762-019-02380-w

Metcalf & Eddy. (1991). Wastewater engineering. Treatment, disposal, and reuse. (3ª ed.), Singapore: McGraw-Hill.

Ministério da Agricultura, Pecuária e Abastecimento (2019). Ouvidoria MAPA - Relatório 2019. https://www.gov.br/agricultura/pt-br/canais_atendimento/ouvidoria/relatorios/relatorio-anual-2019/view

Marangon, B. B., Silva, T. A., Calijuri, M. L., Alves, S. do C., dos Santos, V. J., & Oliveira, A. P. de S. (2020). Reuse of treated municipal wastewater in productive activities in Brazil’s semi-arid regions. Journal of Water Process Engineering, 37(May), 101483. https://doi.org/10.1016/j.jwpe.2020.101483

Marques, I. M., Melo, N. R., Oliveira, A. C. V., & Moreira, Í. T. A. (2020). Bioremediation of urban river wastewater using Chlorella vulgaris microalgae to generate biomass with potential for biodiesel production. Research, Society and Development, 9(7), e823974882. https://doi.org/10.33448/rsd-v9i7.4882

Mata-Alvarez, J., Dosta, J., Romero-Güiza, M., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412-427. https://doi.org/10.1016/j.rser.2014.04.039

Melamane, X., Strong, P., Burgess, J. (2016). Treatment of wine distillery wastewater: a review with emphasis on anaerobic membrane reactors. South African Journal of Enology and Viticulture, 28 (1), 25-36. https://doi.org/10.21548/28-1-1456

Mendez, L., Sialve, B., Tomás-Pejó, E., Ballesteros, M., Steyer, J. P., & González-Fernández, C. (2016). Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production. Bioprocess and Biosystems Engineering, 39(5), 703–712. https://doi-org.ez10.periodicos.capes.gov.br/10.1007/s00449-016-1551-7

Ministério do Desenvolvimento Regional (2019). PLANSAB - Plano Nacional De Saneamento Básico: Mais Saúde com Qualidade de Vida e Cidadania. Acesso em 13 de julho de 2021, disponível em Ministério do Desenvolvimento Regional: http://www.agersa.ba.gov.br/wp-content/uploads/2019/03/Versaoatualizada07mar2019_consultapublica.pd

Mohana, S., Acharya, B. K., Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials, 163, 12-25. https://doi.org/10.1016/j.jhazmat.2008.06.079

Mohsenpour, S. F., Hennige, S., Willoughby, N., Adeloye, A., & Gutierrez, T. (2021). Integrating micro-algae into wastewater treatment: A review. In Science of the Total Environment (Vol. 752). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.142168

Moreira, I. T. A., Oliveira, O. M. C., Azwell, T., Queiroz, A. F. S., Nano, R. M. W., Souza, E. S., Anjos, J. A. S. A., Assunção, R. V. & Guimarães, L. M. (2016). Strategies of bioremediation for the degradation of petroleum hydrocarbons in the presence of metals in mangrove simulated. CLEAN–Soil, Air, Water, 44(6), 631-637.

Mukherjee, C.; Chowdhury, R.; Sutradhar, T. et al, (2016). Parboiled rice effluent: A wastewater niche for microalgae and cyanobacteria with growth coupled to comprehensive remediation and phosphorus biofertilization. Algal Research, V.19, pp.225-236

Nakasaki, K., Koyama, M., Maekawa, T., & Fujita, J. (2019). Changes in the microbial community during the acclimation process of anaerobic digestion for treatment of synthetic lipid-rich wastewater. Journal of Biotechnology, 306(August), 32–37. https://doi.org/10.1016/j.jbiotec.2019.09.003

Náthia-Neves, G., Berni, M., Dragone, G., Mussatto, S. I., & Forster-Carneiro, T. (2018). Anaerobic digestion process: technological aspects and recent developments. International Journal of Environmental Science and Technology, 15(9), 2033–2046. https://doi.org/10.1007/s13762-018-1682-2

Neto, M. D., & Jesus, A. D. (31/12 de 21/10 de 2014). Avaliação das condições de saneamento ambiental segundo a percepção dos moradores do município de Campo Formoso - BA. Acesso em 12 de julho de 2021, disponível em https://anais.abrhidro.org.br/job.php?Job=7495

Oliveira, A. C. V., Silva, A. de S., & Moreira, Í. T. A. (2019). Economia Circular: Conceitos E Contribuições Na Gestão De Resíduos Urbanos. RDE - Revista de Desenvolvimento Econômico, 3(44), 273–289. https://doi.org/10.36810/rde.v3i44.6386

Oliveira, O. M. C., Queiroz, A. F. S., Cerqueira, J. R., Soares, S. A R., Garcia, K. S., Filho, A. P., Rosa, M. L. S., Suzart, C. M., Pinheiro, L. L. & Moreira, I. T. A. (2020) Environmental disaster in the northeast coast of Brazil: Forensic geochemistry in the identification of the source of the oily material. Marine Pollution Bulletin, 160, 111597.

Organização das Nações Unidas (2020). ONU News: Perspectiva Global Reportagens Humanas. Acesso em 13 de julho de 2021, disponível em Nações Unidas: https://news.un.org/pt/story/2020/11/1733352

Patel, A.K., Choi, Y.Y., Sim, S.J. (2020). Emerging prospects of mixotrophic microalgae: way forward to sustainable bioprocess for environmental remediation and costeffective. biofuels. Bioresource Technology, 300, 122741. https://doi.org/10.1016/j.biortech.2020.122741

Paul, S., Dutta, A., Defersha, F., & Dubey, B. (2018). Municipal Food Waste to Biomethane and Biofertilizer: A Circular Economy Concept. Waste and Biomass Valorization, 9(4), 601–611. https://doi.org/10.1007/s12649-017-0014-y

Pei, K., Xiao, K., Hou, H., Tao, S., Xu, Q., Liu, B., & Yang, J. (2020). Improvement of sludge dewaterability by ammonium sulfate and the potential reuse of sludge as nitrogen fertilizer. Environmental Research, 191, 110050.https://doi.org/10.1016/j.envres.2020.110050

Pereira, A. S.; Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da Pesquisa Científica. UFSM.

Calijuri, M. C., Cunha, D. G. F. (2013). Engenharia ambiental: Conceitos, tecnologia e gestão. Editora Campus.

Pouresmaeil, S., Nosrati, M., & Ebrahimi, S. (2019). Operating control for enrichment of hydrogen-producing bacteria from anaerobic sludge and kinetic analysis for vinasse inhibition. Journal of Environmental Chemical Engineering, 7(3). https://doi.org/10.1016/j.jece.2019.103090

Programa das Nações Unidas para o Desenvolvimento (2015). Objetivos de Desenvolvimento Sustentável. Acesso em 13 de julho de 2021, disponível em PNUD Brasil: https://www.br.undp.org/content/brazil/pt/home/sustainable-development-goals.html

Prada, S. M., Guekezian, M., Suarez-Iha, M. E. V. (1998). Metodologia analítica para a determinação de sulfato em vinhoto. Química Nova, 21(3), 249-252. https://doi.org/10.1590/S0100-40421998000300002

Procházka, J., Dolejš, P., MácA, J., & Dohányos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439–447. https://doi.org/10.1007/s00253-011-3625-4

Queiroz, M. I., Lopes, E. J., Zepka, L. Q., Bastos, R. G., & Goldbeck, R. (2007). The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresource Technology, 98(11), 2163–2169. https://doi.org/10.1016/j.biortech.2006.08.034

Rada-Ariza, A. M., Lopez-Vazquez, C. M., van der Steen, N. P., & Lens, P. N. L. (2017). Nitrification by microalgal-bacterial consortia for ammonium removal in flat panel sequencing batch photo-bioreactors. Bioresource Technology, 245, 81–89. https://doi.org/10.1016/j.biortech.2017.08.019

Ramos, L. R., Lovato, G., Rodrigues, J. A. D., & Silva, E. L. (2021). Anaerobic digestion of vinasse in fluidized bed reactors: Process robustness between two-stage thermophilic-thermophilic and thermophilic-mesophilic systems. Journal of Cleaner Production, 314, 128066. https://doi.org/10.1016/j.jclepro.2021.128066

Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W. Q., & Baroutian, S. (2020). Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. In Fuel (Vol. 261). Elsevier Ltd. https://doi.org/10.1016/j.fuel.2019.116497

Razia, M., Uma Maheshwari Nallal, V. U., & Sivaramakrishnan, S. (2020). Agro-based sugarcane industry wastes for production of high-value bioproducts. Biovalorisation of Wastes to Renewable Chemicals and Biofuels,16, 303–316. https://doi.org/10.1016/B978-0-12-817951-2.00016-X

Rhoden, K., Alonso, J., Carmona, M., Pham, M., & Barnes, A. N. (2021). Twenty years of waterborne and related disease reports in Florida, USA. One Health, 100294. https://doi.org/10.1016/j.onehlt.2021.100294

Ritter, W. F. (2016). Waste Management Engineering. In Reference Module in Food Science. https://doi.org/10.1016/b978-0-08-100596-5.02997-8

Rizvi, H., Ali, S., Yasar, A., Ali, M., & Rizwan, M. (2018). Applicability of upflow anaerobic sludge blanket (UASB) reactor for typical sewage of a small community: its biomass reactivation after shutdown. International Journal of Environmental Science and Technology, 15(8), 1745–1756. https://doi.org/10.1007/s13762-017-1537-2

Rocha, G. S., Pinheiro, A. d., & Costa, C. A. (2020). Gestão dos Recursos Hídricos no Município de Parauapebas (PA): Avaliação dos Usos, Alteração dos Cenários e Possíveis Impactos. Research, Society and Development – RSD, 9, 1689-1699. doi:10.33448/rsd-v9i4.3042

Rodrigues, M. M., Viana, D. G., Oliveira, F. C., Alves, M. C., & Regitano, J. B. (2021). Sewage sludge as organic matrix in the manufacture of organomineral fertilizers: Physical forms, environmental risks, and nutrients recycling. Journal of Cleaner Production, 127774. https://doi.org/10.1016/j.jclepro.2021.127774

Rosemarin, A., Macura, B., Carolus, J., Barquet, K., Ek, F., Järnberg, L., … Okruszko, T. (2020). Circular nutrient solutions for agriculture and wastewater – a review of technologies and practices. Current Opinion in Environmental Sustainability, 45(November), 78–91. https://doi.org/10.1016/j.cosust.2020.09.007

Rout, P. R., Shahid, M. K., Dash , R. R., Bhunia, P., Liu, D., Varjani, S., Zhang, T. C., Surampalli, R. Y. (2021). Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced Technologies. Journal of Environmental Management, 296, 113246. https://doi-org.ez10.periodicos.capes.gov.br/10.1016/j.jenvman.2021.113246.

Ruan, D., Zhou, Z., Pang, H., Yao, J., Chen, G., & Qiu, Z. (2019). Enhancing methane production of anaerobic sludge digestion by microaeration: Enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis. Bioresource Technology, 289. https://doi.org/10.1016/j.biortech.2019.121643

Sadeghian, A.; Chapra, S.; Hudson, J.; Wheater, H.; Lindenschmidta, K. (2018). Improving in-lake water quality modeling using variable chlorophyll a/algal biomass ratios. Environmental Modelling & Software, 101, 73-85. https://doi.org/10.1016/j.envsoft.2017.12.009

Sacristan-de Alva, M., Luna-Pabello, V. M., Cadena-Martínez, E., & Alva-Martínez, A. F.. (2014). Producción de biodiésel a partir de microalgas y una cianobacteria cultivadas en diferentes calidades de agua. Agrociencia, 48(3), 271-284.

Saia, F. T., Souza, T. S. O., Duarte, R. T. D., Pozzi, E., Fonseca, D., & Foresti, E. (2016). Microbial community in a pilot-scale bioreactor promoting anaerobic digestion and sulfur-driven denitrification for domestic sewage treatment. Bioprocess and Biosystems Engineering, 39(2), 341–352. https://doi.org/10.1007/s00449-015-1520-6

Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. Current Opinion in Environmental Science and Health, 2, 64–74. https://doi.org/10.1016/j.coesh.2018.03.005

Sánchez-Ramírez, J. E., Seco, A., Ferrer, J., Bouzas, A., & García-Usach, F. (2015). Treatment of a submerged anaerobic membrane bioreactor (SAnMBR) effluent by an activated sludge system: The role of sulphide and thiosulphate in the process. Journal of Environmental Management, 147, 213–218. https://doi.org/10.1016/j.jenvman.2014.04.043

Santos, P. S., Zaiat, M., Nascimento, C. A. O., & Fuess, L. T. (2019). Does sugarcane vinasse composition variability affect the bioenergy yield in anaerobic systems? A dual kinetic-energetic assessment. Journal of Cleaner Production, 240, 118005. https://doi.org/10.1016/j.jclepro.2019.118005

Sawatdeenarunat, C., Nguyen, D., Surendra, K. C., Shrestha, S., Rajendran, K., Oechsner, H., … Khanal, S. K. (2016). Anaerobic biorefinery: Current status, challenges, and opportunities. Bioresource Technology, 215, 304–313. https://doi.org/10.1016/j.biortech.2016.03.074

Sgroi, M., Vagliasindi, F. G. A., & Roccaro, P. (2018). Feasibility, sustainability and circular economy concepts in water reuse. Current Opinion in Environmental Science and Health, 2, 20–25. https://doi.org/10.1016/j.coesh.2018.01.004

Shin, D. Y., Cho, H. U., Utomo, J. C., Choi, Y. N., Xu, X., & Park, J. M. (2015). Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresource Technology, 184, 215–221. https://doi.org/10.1016/j.biortech.2014.10.090

Show, K. Y., Yan, Y., Yao, H., Guo, H., Li, T., Show, D. Y., … Lee, D. J. (2020). Anaerobic granulation: A review of granulation hypotheses, bioreactor designs and emerging green applications. Bioresource Technology, 300(October 2019), 122751. https://doi.org/10.1016/j.biortech.2020.122751

Silva, A. F. R., Magalhães, N. C., Cunha, P. V. M., Amaral, M. C. S., & Koch, K. (2020). Influence of COD/SO42− ratio on vinasse treatment performance by two-stage anaerobic membrane bioreactor. Journal of Environmental Management, 259. https://doi.org/10.1016/j.jenvman.2019.110034

Silva, V. B. S., Garcia, W. R. R. Jr.,, Araújo, C. V., & Kölling, G. J. (2020). Universalização do Saneamento Básico: os desafios regulatórios no Brasil. Revista Brasileira de Políticas Públicas e Internacionais – RPPI, 5, 180-203.

Silva, M. M., Leao, D. J., Moreira, I. T. A., Oliveira, O. M. C., Queiroz, A. F. S. & Ferreira, S. L. C. (2015). Speciation analysis of inorganic antimony in sediment samples from São Paulo Estuary, Bahia State, Brazil. Environmental Science and Pollution Research, 22, 8386-8391.

Smol, M., Adam, C., & Preisner, M. (2020). Circular economy model framework in the European water and wastewater sector. Journal of Material Cycles and Waste Management, 22(3), 682–697. https://doi.org/10.1007/s10163-019-00960-z

Sistema Nacional de Informações Sobre Saneamento. (2019). Painel do Setor de Esgotamento Sanitário. Ministério do Desenvolvimento Regional. Acesso em (18 de agosto de 2021): http://snis.gov.br/painel-informacoes-saneamento-brasil/web/painel-esgotamento-sanitario

Sood, A., Uniyal, P. L., Prasanna, R., & Ahluwalia, A. S. (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio., 41(2), 122-137. doi:10.1007/s13280-011-0159-z

Sousa, R. M.O. F., Amaral, C., Fernandes, J. M. C., Fraga, I., Semitela, S., Braga, F., Coimbra, A. M., Dias, A. A., Bezerra, R. M., Sampaio, A. (2019). Hazardous impact of vinasse from distilled winemaking by-products in terrestrial plants and aquatic organisms. Ecotoxicology and Environmental Safety, 183, 109493. https://doi.org/10.1016/j.ecoenv.2019.109493

Stanier, R. Y & Van Niel, C. B. (1962). The concept of a bacterium. Archiv fur Mikrobiologie, 42, 17-35. https://doi.org/10.1007/BF00425185

Świątczak, P., Cydzik-Kwiatkowska, A., Rusanowska, P. (2017). Microbiota of anaerobic digesters in a full-scale wastewater treatment plant. Archives of Environmental Protection. Vol. 43 n. 3 pp. 53–60. Doi 10.1515/aep-2017-0033.

Tawalbeh, M., Rajangam, A. S., Salameh, T., Al-Othman, A., & Alkasrawi, M. (2021). Characterization of paper mill sludge as a renewable feedstock for sustainable hydrogen and biofuels production. International Journal of Hydrogen Energy, 46(6), 4761-4775.https://doi.org/10.1016/j.ijhydene.2020.02.166

Teixeira, J. C., Oliveira, G. S., Viali, A. d., & Muniz, S. S. (jan./mar. de 2014). Estudo do impacto das deficiências de saneamento básico sobre a saúde pública no Brasil no período de 2001 a 2009. Engenharia Sanitária e Ambiental, 19. doi:https://doi.org/10.1590/S1413-41522014000100010

Tena, M., Luque, B., Perez, M., & Solera, R. (2020). Maior produção de hidrogênio a partir de lodo de esgoto por cofermentação com vinhaça de vinho. International Journal of Hydrogen Energy , 45 (32), 15977-15984. https://doi.org/10.1016/j.ijhydene.2020.04.075

Umamaheswari, J., & Shanthakumar, S. (2016). Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. In Reviews in Environmental Science and Biotechnology (Vol. 15, Issue 2, pp. 265–284). Springer Netherlands. https://doi.org/10.1007/s11157-016-9397-7

União da Indústria de Cana-de-Açúcar (2019). Balanço de Atividades. Fonte: https://www.unica.com.br/wp-content/uploads/2019/06/Relatorio-Atividades-201213-a-201819.pdf

Venkiteshwaran, K., Bocher, B., Maki, J., & Zitomer, D. (2015). Relating Anaerobic Digestion Microbial Community and Process Function : Supplementary Issue: Water Microbiology. Microbiology Insights, 8s2, MBI.S33593. https://doi.org/10.4137/mbi.s33593

Verâne, J., Santos, N. C. P., Silva, V. L., Almeida, M., Oliveira, O. M. C. & Moreira, I. T. A. (2020 Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Marine Pollution Bulletin, 160, 111687.

Von Sperling, M. (2018). Princípios básicos do tratamento de esgotos, (2ª edição). Editora UFMG.

Voulvoulis, N. (2018). Water reuse from a circular economy perspective and potential risks from an unregulated approach. Current Opinion in Environmental Science and Health, 2, 32–45. https://doi.org/10.1016/j.coesh.2018.01.005

Walter, A., Probst, M., Franke-Whittle, I., H., Ebner, C., Podmirseg, S., M., Etemadi-Shalamzari, M., Hupfauf, S., Insam, H. (2019). Microbiota in anaerobic digestion of sewage sludge with and without co-substrates. Water and Environment Journal. Vol. 33 pp. 214–222. Doi:10.1111/wej.12392.

Wandera, S., M., Qiao, W., Jiang, M., Mahdy, A., Yin, D., Dong, R. (2019). Improved methanization of sewage sludge using a bioreactor anaerobic membrane integrated with biological hydrolysis hyperthermophilic. Energy Conversion and Management, 196, 846-855. https://doi.org/10.1016/j.enconman.2019.06.054

Wang, P., Wang, H., Qiu, Y., Ren, L., & Jiang, B. (2018). Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. In Bioresource Technology (Vol. 248, pp. 29–36). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2017.06.152

Wang, X., Duan, X., Chen, J., Fang, K., Feng, L., Yan, Y., & Zhou, Q. (2016). Enhancing anaerobic digestion of waste activated sludge by pretreatment: Effect of volatile to total solids. Environmental Technology (United Kingdom), 37(12), 1520–1529. https://doi.org/10.1080/09593330.2015.1120783

Wang, X., Li, Z., Zhou, X., Wang, Q., Wu, Y., Saino, M., & Bai, X. (2016). Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw. Bioresource Technology, 219, 150–157. https://doi.org/10.1016/j.biortech.2016.07.116

Wang, X., Liu, S. F., Qin, Z. H., Balamurugan, S., Li, H. Y., & Lin, C. S. K. (2020). Sustainable and stepwise waste-based utilisation strategy for the production of biomass and biofuels by engineered microalgae. Environmental Pollution, 265, 114854. https://doi.org/10.1016/j.envpol.2020.114854

WHO, W. H. (2004). Water, Sanitation and Hygiene Links to Health. Acesso em 12 de julho de 2021, disponível em World Health Organization – WHO: https://www.who.int/water_sanitation_health/publications/facts2004/en/

Xie, B., Gong, W., Tian, Y., Qu, F., Luo, Y., Du, X., Tang, X., Xu, D., Lin, D., Li, G., & Liang, H. (2018). Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors. Chemical Engineering Journal, 350, 1092–1102. https://doi.org/10.1016/j.cej.2018.06.032

Yaashikaa, P. R., Kumar, P. S., Saravanan, A., Varjani, S., & Ramamurthy, R. (2020). Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. Science of the Total Environment, 748, 141312. https://doi.org/10.1016/j.scitotenv.2020.141312

Ying Y.T D., Shiong K. K., Wayne C.K., Tao, Y., Ho, S.-H., & Loke Show, P. (2020). Potential Utilization of Bioproducts from Microalgae for the Quality Enhancement of Natural Products. Bioresource Technology, 304, 122997. Doi:10.1016/j.biortech.2020.12299

Yousuf, A. (2020). Fundamentals of microalgae cultivation. In Yousuf, A. (Org), Microalgae cultivation for biofuels production (Cap. 1, pp 1-9). Sylhet, Bangladesh: Elsevier. https://doi.org/10.1016/B978-0-12-817536-1.00001-1

Yu, B., Luo, J., Xie, H., Yang, H., Chen, S., Liu, J., ... & Li, Y. Y. (2021). Species, fractions, and characterization of phosphorus in sewage sludge: A critical review from the perspective of recovery. Science of The Total Environment, 147437. https://doi.org/10.1016/j.scitotenv.2021.147437

Zhuang, L.-L., Li, M., & Hao Ngo, H. (2020). Non-suspended microalgae cultivation for wastewater refinery and biomass production. Bioresource Technology, 308, 123320. doi:10.1016/j.biortech.2020.123320

Zhang, J., Loh, K. C., Li, W., Lim, J. W., Dai, Y., & Tong, Y. W. (2017). Three-stage anaerobic digester for food waste. Applied Energy, 194, 287–295. https://doi.org/10.1016/j.apenergy.2016.10.116

Zhang, M., Qiao, S., Shao, D., Jin, R., & Zhou, J. (2018). Simultaneous nitrogen and phosphorus removal by combined anammox and denitrifying phosphorus removal process. Journal of Chemical Technology and Biotechnology, 93(1), 94–104. https://doi.org/10.1002/jctb.5326

Zupančič, G.D., & Grilc, V. (2012). Anaerobic Treatment and Biogas Production from Organic Waste. In Management of Organic Waste. InTech. https://doi.org/10.5772/32756

Publicado

07/09/2021

Cómo citar

SANTOS, G. M. M. dos .; BARBOSA, M. S.; PORTO, M. M. M.; CHONG, N. S. R.; LUZ, M. V. S. da .; SANTOS, R. S. S. .; SILVA, A. de S.; MOREIRA , Ícaro T. A. Uso de microorganismos en el tratamiento anaeróbico de efluentes ricos en nitrógeno y fósforo con vista a la economía circular. Research, Society and Development, [S. l.], v. 10, n. 11, p. e525101119952, 2021. DOI: 10.33448/rsd-v10i11.19952. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/19952. Acesso em: 7 ene. 2025.

Número

Sección

Ingenierías