Uso de caolín como adsorbente potencial de bajo costo para la eliminación del tinte azul reactivo BF-5G

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i12.20035

Palabras clave:

Adsorbente de bajo costo; Adsorción; Tintes reactivos; Aguas residuales textiles.

Resumen

El objetivo de este trabajo fue utilizar caolín como adsorbente de efluentes sintéticos, a partir del colorante azul reactivo BF-5G. Se utilizaron varias técnicas analíticas para investigar la cristalinidad, morfología, superficie específica y grupo funcional fundamental del caolín del material. En secuencia, se estudiaron diferentes valores de pH utilizando un sistema de baño finito. Al investigar la influencia del pH, el adsorbente utilizado mostró un desempeño superior a un valor de pH igual a 1. A partir de este valor óptimo, se realizaron estudios cinéticos con las condiciones ideales de pH, concentración y adsorbentes (pH = 1, C0 = 50 mg/L y caolín utilizado como adsorbente). El porcentaje de adsorción es máximo a pH 1 y disminuye con la concentración básica de la solución de tinte.

Citas

Ahmed, K., Rehman, F., Pires, C. T. G. V. M. T., Rahim, A., Santos, A. L., & Airold, C. (2016). Aluminum doped mesoporous silica SBA-15 for the removal of remazol yellow dye from water. Microporous and Mesoporous Materials, 236, 167-175. https://doi.org/10.1016/j.micromeso.2016.08.040

Ajayi, A. O., Atta, A. Y., Aderemi B. O. & Adefila S. S. (2010). Novel Method of Metakaolin Dealumination -Preliminary Investigation. Journal of Applied Sciences Research, 6 (10), 1539-1546.

Barbosa, A. dos S., & Rodrigues, M. G. F. (2019). Adsorção do corante azul reativo BF-5G em zeólitas: influência do pH. In: I Congresso Internacional de Meio Ambiente e Sociedade e III Congresso Internacional da Diversidade do Semiárido - I CONIMAS e III CONIDIS, 2019, Campina Grande. I Congresso Internacional de Meio Ambiente e Sociedade e III Congresso Internacional da Diversidade do Semiárido - I CONIMAS e III CONIDIS.

Barbosa, A. S., Monteiro, G. S., Rocha, L. N., Lima, E. G., & Rodrigues, M. G. (2019). Remoção do Corante Reativo vermelho por adsorção utilizando argilas branca e vermelha. Revista Gestão e Sustentabilidade Ambiental, 8, 539-561. http://dx.doi.org/10.19177/rgsa.v8e22019539-561

Caponi, N., Collazzo, G. C., Jahn, S. L., Dotto, G. L., Mazutti, M. A., & Foletto, E. L. (2017). Use of Brazilian kaolin as a potential low-cost adsorbent for the removal of malachite green from colored effluents. Journal of Materials Research, 20, 14-22. https://doi.org/10.1590/1980-5373-MR-2016-0673

Castellano, M., Turturro, A., Riani, P., Montanari, T., Finocchio, E., Ramis, G., & Busca G. (2010). Bulk and surface properties of commercial kaolins. Applied Clay Science, 48 (3), 446- 454. https://doi.org/10.1016/j.clay.2010.02.002

De Paula, L. R. N., De Paula, G. M., Santos, T. S., Clericuzi, G., & Rodrigues, M. G. F. (2020). Synthesis and application of MCM-41 molecular sieve for removal of reactive dyes. Materials Science Forum.

Foo, K. Y., & Hameed, B. H. (2010). An overview of dye removal via activated carbono adsorption process. Desalination and Water Treatment, 19, 255-274. https://doi.org/10.5004/dwt.2010.1214

Frost, R. L., & Johansson, U. (1998). Combination Bands in the Infrared Spectroscopy of Kaolins—A Drift Spectroscopic Study. Clays and Clay Minerals, 46, 466–477. https://doi.org/10.1346/CCMN.1998.0460411

Gao, L., Zhai, Y., Ma, H., & Wang, B. (2009). Degradation of cationic dye methylene blue by ozonation assisted with kaolin. Applied Clay Science, 46, 226-229. https://doi.org/10.1016/j.clay.2009.08.030

Hao, O. J., Kim, H. & Chiang, P.-C. (2010). Decolorization of Wastewater. Critical Reviews in Environmental Science and Technology, 30 (4), 449–505. https://doi.org/10.1080/10643380091184237

Jawad, A. H. & Abdulhameed, A. S. (2020). Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces, 18, 100422. https://doi.org/10.1016/j.surfin.2019.100422

Jawad, A. H., Abdulhameed, A. S. & Mastuli, M. S. (2020). Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. Journal of Taibah University for Science, 14 (1), 305–313. https://doi:10.1080/16583655.2020.1736767

Jawad, A. H., Abdulhameed, A. S., Yaseen, Z. M., & Malek, N. N. A. (2020). Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite. International Journal of Biological Macromolecules, 164, 4218-4230. https://doi:10.1016/j.ijbiomac.2020.08.201

Mall, I. D., Srivastava, V. C., & Agarwal, N. K. (2006). Removal of orange – G and methyl violet by adsorption onto bagasse fly ash- kinetic study equilibrium isotherm analyses. Dyes and pigments, 69, 210-223. http://dx.doi.org/10.1016/j.dyepig.2005.03.013

Medri, V., Papa, E., Mor, M., Vaccari, A., Natali, Murri, A., Piotte, L., & Landi, E. (2020). Mechanical strength and cationic dye adsorption ability of metakaolin-based geopolymer spheres. Applied Clay Science, 193, 105678. https://doi.org/10.1016/j.clay.2020.105678

Meigoli Boushehrian, M., Esmaeili, H. & Foroutan, R. (2020). Ultrasonic assisted synthesis of Kaolin/CuFe2O4 nanocomposite for removing cationic dyes from aqueous media. Journal of Environmental Chemical Engineering, 4, 103869. https://doi.org/10.1016/j.jece.2020.103869

Moore, D. M. & Reynolds, Jr. R. C. (1989). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 179-201.

Mustapha, S., Tijani, J. O., Ndamitso, M. M., Abdulkareem, A. S., Shuaib, D. T., & Mohammed, A. K. (2021). Adsorptive removal of pollutants from industrial wastewater using mesoporous kaolin and kaolin/TiO2 nanoadsorbents. Environmental Nanotechnology, Monitoring & Management, 15 (3), 100414. https://doi.org/10.1016/j.enmm.2020.100414

Nallis, K., Katsumata, K., Isobe, T., Okada, K., Bone, P., & Othman, R. (2013). Preparation and UV-shielding property of Zr0.7Ce0.3O2–kaolinite nanocomposites. Applied Clay Science, 80-81, 147-153. https://doi.org/10.1016/j.clay.2013.06.004

Nandi, B. K., Goswami, A. & Purkait, M. K. (2009). Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials, 161 (1), 387–395. https://doi.org/10.1016/j.jhazmat.2008.03.110

Pereira, M. F. R., Soares, S. F., Orfão, J. J. M., & Figueiredo, J. L. (2003). Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon, 41 (4), 811-821. doi:10.1016/S0008-6223(02)00406-2

Rocha, L. N., Barbosa, A. S., & Rodrigues, M. G. F. (2016). Remoção do corante vermelho BF-4B em sistema descontínuo utilizando argilas esmectíticas. XI Encontro Brasileiro de Adsorção.

Rodrigues, D. P. A., Tomaz P. F., Barbosa T. L. A., & Rodrigues M. G. F. (2018). Síntese de estrutura metalorgânica ZIF-8 e aplicação na remoção de corante reativo azul BF-5G. In: 1º Simpósio de Química do CCA/UFPB, Areia.

Rodrigues, D. P. A., Tomaz, P. F., Barbosa, T. L. A., Barbosa, A. S., & Rodrigues, M. G. F. (2018). Remoção do corante reativo azul BF-5G utilizando zeólita NaY modificada com brometo cetiltrimetilamônio. In: 1º Simpósio de Química do CCA/UFPB, Areia.

Russel, J. D. & Fraser, A. R. (1994). Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer Netherlands.

Salleh, M. A, M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1-13. https://doi.org/10.1016/j.desal.2011.07.019

Silva, Ê. H. dos S., Rodrigues, D. P. A., & Rodrigues, M. G. F. (2019). Adsorção em batelada de corante reativo azul bifuncional 5G em carvão ativado comercial. In: 4 Congresso Nacional de Pesquisa e Ensino em Ciências CONAPESC, Campina Grande. http://editorarealize.com.br/editora/anais/conapesc/2019/TRABALHO_EV126_MD1_SA6_ID1508_30072019172642.pdf

Singh, H., Chauhan, G., Jain, A. K., & Sharma, S. K. (2017). Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. Journal of Environmental Chemical Engineering, 5, 122-135. https://doi.org/10.1016/j.jece.2016.11.030

Tang, Q., Tang, X., Li Z., Chen, Y., Kou, N., & Sun Z. (2009). Adsorption and desorption behaviour of Pb(II) on a natural kaolin: equilibrium, kinetic and thermodynamic studies. Journal of Chemical Technology & Biotechnology, 84 (9), 1371–1380. https://doi.org/10.1002/jctb.2192

Vimonses, V., Lei, S., Jin, B., Chow, C. W. K., & Saint, C. (2009). Adsorption of congo red by three Australian kaolins. Applied Clay Science, 43 (3), 465–472. https://doi.org/10.1016/j.clay.2008.11.008

Wang, H., Li, C., Peng, Z., & Zhang, S. (2011). Characterization and thermal behavior of kaolin. Journal of Thermal Analysis and Calorimetry, 105, 157-160. https://doi.org/10.1007/s10973-011-1385-0

Zhang, X., Lin, S., Lu, X. Q., & Chen Z. L. (2010). Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chemical Engineering Journal, 163, 243-248. https://doi.org/10.1016/j.cej.2010.07.056

Zhou, C., Gao, Q., Luo, W., Zhou, Q., Wang, H., Yan, C., & Duan, P. (2015). Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash. Journal of the Taiwan Institute of Chemical Engineers, 52, 147–157. https://doi.org/10.1016/j.jtice.2015.02.014

Zhou, y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environ Pollut, 252, 352-365. https://doi.org/10.1016/j.envpol.2019.05.072

Zhu, H.-Y., Jiang, R., & Xiao L. (2010). Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Applied Clay Science, 48 (3), 522–526. https://doi.org/10.1016/j.clay.2010.02.003

Descargas

Publicado

12/09/2021

Cómo citar

BARBOSA, A. dos S. .; RODRIGUES, M. G. F. .; ALVES, D. P. R. . Uso de caolín como adsorbente potencial de bajo costo para la eliminación del tinte azul reactivo BF-5G. Research, Society and Development, [S. l.], v. 10, n. 12, p. e13101220035, 2021. DOI: 10.33448/rsd-v10i12.20035. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20035. Acesso em: 3 ene. 2025.

Número

Sección

Ingenierías