Potencial antifúngico de los componentes del aceite essencial
DOI:
https://doi.org/10.33448/rsd-v10i12.20537Palabras clave:
Constituyentes; Aceites esenciales; Hongos.Resumen
Los productos naturales son fuentes importantes de descubrimiento de nuevos agentes medicinales y, debido al potencial biológico y farmacológico de estos compuestos, es necesario realizar estudios que permitan su aplicación. El objetivo de este trabajo fue evaluar el potencial antifúngico de ciertos constituyentes de los aceites esenciales. La evaluación del efecto inhibidor de los compuestos p-cimeno, eugenol, carvacrol, citral, trans-cariofileno y trans-farnesol se probó en los hongos Aspergillus carbonarius, Aspergillus flavus, Aspergillus ochraceus y Aspergillus niger, utilizando la metodología de difusión en disco. Se evaluó el efecto de los compuestos eugenol, carvacrol y citral sobre el crecimiento micelial de los hongos A. carbonarius y A. niger a diferentes temperaturas. El análisis de la actividad inhibidora de los hongos reveló que los compuestos eugenol, carvacrol y citral mostraron mayor capacidad para inhibir el crecimiento de los microorganismos evaluados. Estos constituyentes también influyeron en el crecimiento micelial de los hongos A. niger y A. carbonarius a diferentes temperaturas, siendo las temperaturas de 20 ºC y 25 ºC más favorables para el desarrollo de los hongos. Los resultados encontrados demostraron ser prometedores en la búsqueda de compuestos bioactivos. Pueden ser relevantes los estudios que involucren a estos constituyentes en otras actividades, así como en asociación con compuestos sintéticos ya utilizados para reducir su toxicidad y resistencia y evaluar el efecto sinérgico entre ellos.
Citas
Abbaszadeh, S., Sharifzadeh, A., Shokri, H., Khosravi, A. R, & Abbaszadeh, A. (2014). Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. Journal de mycologie medicale, 24 (2), e51-e56. http://dx.doi.org/10.1016/j.mycmed.2014.01.063
Ahmad, A., Khan, A., Kumar, P., Bhatt, R. P, & Manzoor, N. (2011). Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Levedura, 28 (8), 611-617. https://doi.org/10.1002/yea.1890
Andrade, M. A., Cardoso, M. D. G., Gomes, M. D. S., Azeredo, C. M. O. D., Batista, L. R., Soares, M. J., Rodrigues, L. M. A., & Figueiredo, A. C. S. (2015). Biological activity of the essential oils from Cinnamodendron dinisii and Siparuna guianensis. Brazilian Journal of Microbiology, 46, 189-194. https://doi.org/10.1590/S1517-838246120130683
Bhatti, H. N., Khan, S. S., Khan, A., Rani, M., Ahmad, V. U., & Choudhary, M. I. (2014). Biotransformation of monoterpenoids and their antimicrobial activities. Phytomedicine, 21(12), 1597-1626. https://dx.doi.org/10.1016/j.phymed.2014.05.011
Brasil. (2017). Vigilância sanitária. Antimicrobianos – Bases Teóricas e Uso Clínico. <http://www.anvisa.gov.br/servicosaude/controle/rede_rm/c ursos/rm_controle/opas_web/modulo1/conceitos.htm
Cristani, M., D'Arrigo, M., Mandalari, G., Castelli, F., Sarpietro, M. G., Micieli, D, Venuti, V., Bisignano, G., Saija, A., & Trombetta, D. (2007). Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. Journal of agricultural and food chemistry, 55(15), 6300-6308. https://doi.org/10.1021/jf070094x
D'Amato, S., Serio, A., López, C. C., & Paparella, A. (2018). Hydrosols: Biological activity and potential as antimicrobials for food applications. Food Control, 86, 126-137. https://doi.org/10.1016/j.foodcont.2017.10.030
Davies, C. R, Wohlgemuth, F., Young, T., Violet, J., Dickinson, M., Sanders, J. W., Vallieres, C., & Avery, S. V (2021). Desafios e estratégias em evolução para o controle de fungos na cadeia de abastecimento alimentar. Fungal biology reviews, 36, 15-26. https://doi.org/10.1016/j.fbr.2021.01.003
Oliveira, K. G., Batista, E. A., da Silva Kraljic, P., da Matta, R. A., Batista, R. M., Lucas, V. A. S., & Fernandes, S. H. (2020). Desenvolvimento de um fungicida natural à partir de piperina. Brazilian Journal of Development, 6 (7), 46433-46447. https://doi.org/10.34117/bjdv6n7-321
Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e agrotecnologia, 35, 1039-1042.
Gomes, M. S., Cardoso, M. D. G., Soares, M. J., Batista, L. R., Machado, S. M., Andrade, M. A., Azeredo, C. M.O., Resende, J. M. V., & Rodrigues, L. M. A. (2014). Use of essential oils of the genus Citrus as biocidal agents. http://dx.doi.org/10.4236/ajps.2014.53041
Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in microbiology, 3, 12. https://doi.org/10.3389/fmicb.2012.00012
Hymery, N., Vasseur, V., Coton, M., Mounier, J., Jany, J. L., Barbier, G., & Coton, E. (2014). Filamentous fungi and mycotoxins in cheese: a review. Comprehensive Reviews in Food Science and Food Safety, 13 (4), 437-456. https://doi.org/10.1111/1541-4337.12069
Hu, Y., Zhang, J., Kong, W., Zhao, G., & Yang, M. (2017). Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food chemistry, 220, 1-8. https://doi.org/10.1016/j.foodchem.2016.09.179
Ketzer, F., Bemvenuti, A., Veiverberg, S., Dörr, M. G., & Schmidt, M. E. (2020). Uso do extrato de Tabernaemontana catharinensis como fungicida alternativo para agricultura natural. Brazilian Journal of Development, 6 (7), 45050-45059. https://doi.org/10.34117/bjdv6n7-213
Leite, M. C. A., Bezerra, A. P. D. B., Sousa, J. P. D., Guerra, F. Q. S., & Lima, E. D. O. (2014). Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evidence-Based Complementary and Alternative Medicine, 2014. http://dx.doi.org/10.1155/2014/378280
Lagrouh, F., Dakka, N., & Bakri, Y. (2017). The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. Journal de mycologie medicale, 27(3), 303-311. http://dx.doi.org/10.1016/j.mycmed.2017.04.008
Lemos, J. G., Stefanello, A., Bernardi, A. O., Garcia, M. V., Magrini, L. N., Cichoski, A. J., Wagner, R., & Copetti, M. V. (2020). Antifungal efficacy of sanitizers and electrolyzed waters against toxigenic Aspergillus. Food Research International, 137, 109-451. https://doi.org/10.1016/j.foodres.2020.109451
Wink, N. Secondary Metabolites, the Role in Plant Diversification. Encyclopedia of Evolutionary Biology. 2016.
Oliveira, L. B. S., Batista, A. H. M., Fernandes, F. C., Sales, G. W. P., & Nogueira, N. A. P. (2016). Atividade antifúngica e possível mecanismo de ação do óleo essencial de folhas de Ocimum gratissimum (Linn.) sobre espécies de Candida. Revista Brasileira de Plantas Medicinais, 18, 511-523. https://doi.org/10.1590/1983-084X/15_222
Paterson, R. R. M., & Lima, N. (2011). Further mycotoxin effects from climate change. Food Research International, 44 (9), 2555-2566. https://doi.org/10.1016/j.foodres.2011.05.038
Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., & Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935. https://doi.org/10.1016/j.ejmech.2017.11.095
Ross, T., Nichols, D. S. (2014) Influence of Temperature. In: Encyclopedia of Food Microbiology. University of Tasmania, Hobart, TAS, Australia, 602–609.
Silva, F., Ferreira, S., Duarte, A., Mendonca, D. I., & Domingues, F. C. (2011). Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine, 19 (1), 42-47. https://doi.org/10.1016/j.phymed.2011.06.033
Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochemical and biophysical research communications, 453 (2), 254-267. https://doi.org/10.1016/j.bbrc.2014.05.090
Tian, J., Ban, X., Zeng, H., He, J., Chen, Y., & Wang, Y. (2012). The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PloS one, 7 (1), e30147. https://doi.org/10.1371/journal.pone.0030147
Ultee, A., Bennik, M. H. J., & Moezelaar, R. J. A. E. M. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and environmental microbiology, 68(4), 1561-1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002
Vieira, P. R., de Morais, S. M., Bezerra, F. H., Ferreira, P. A. T., Oliveira, Í. R., & Silva, M. G. V. (2014). Chemical composition and antifungal activity of essential oils from Ocimum species. Industrial Crops and Products, 55, 267-271. https://doi.org/10.1016/j.indcrop.2014.02.032
Yogabaanu, U., Weber, J. F. F., Convey, P., Rizman-Idid, M., & Alias, S. A. (2017). Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment soil fungi. Polar Science, 14, 60-67. https://doi.org/10.1016/j.polar.2017.09.005
Zore, G. B., Thakre, A. D., Jadhav, S., & Karuppayil, S. M. (2011). Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine, 18(13), 1181-1190. https://doi.org/10.1016/j.phymed.2011.03.008
Wang, Y., Zeng, X., Zhou, Z., Xing, K., Tessema, A., Zeng, H., & Tian, J. (2015). Inhibitory effect of nerol against Aspergillus niger on grapes through a membrane lesion mechanism. Food Control, 55, 54-61. https://doi.org/10.1016/j.foodcont.2015.02.029
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Rafaela Vieira Souza; Maria das Graças Cardoso ; Vanuzia Rodrigues Fernandes Ferreira; Cassia Duarte Oliveira; Marcus Vinicius Prado Alves; Gabriela Aguiar Campolina; Luís Roberto Batista
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.