Estudio del processo de reciclaje de residuos de polímero-aluminio de envases de carton

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i13.20592

Palabras clave:

Envases de cartón; Reciclaje; Polímero-Aluminio.

Resumen

La complejidad de la estructura de los envases de cartón es uno de los factores que impiden el desarrollo de los procesos de reciclaje después el consumo. Los procesos que se utilizan actualmente no pueden reciclar por completo todos los materiales utilizados en estos envases. Los pocos procesos económicamente viables se aplican para reciclar las capas de papel, dejando como residuo las capas combinadas de polietileno y aluminio, conocidas como residuos de polímero-aluminio (Poly-Al) de los envases de cartón. En este contexto, se investigó y desarrolló un método de reciclaje de polietileno y aluminio, presente en los residuos de Poly-Al de envases de cartón posconsumo, utilizando el proceso de digestión alcalina de aluminio. Se evaluaron soluciones con diferentes concentraciones de NaOH a temperatura ambiente con un tiempo de tratamiento de 24 h. Después de los procesos de eliminación de aluminio, se analizaron las películas de polietileno y las fases líquida y sólida precipitadas del medio de reacción. Para los análisis se utilizaron microscopía electrónica de barrido (MEB), espectroscopia de fluorescencia de rayos X de dispersión de energía (EDS), difracción de rayos X (DRX), espectrometría de masas de plasma acoplado inductivamente (ICP) y calorimetría diferencial de barrido (DSC). Los resultados indicaron la eliminación de aluminio de las películas de polietileno de los residuos de Poly-Al con buena eficiencia y sin comprometer significativamente las propiedades térmicas del polímero.

Citas

Barrera, G. M., López, M., Rivas, N. G., Diaz, J. J. C., Córdoba, L. A., Reis, J. M. L., & Gencel, O. (2017). Recycled cellulose from Tetra Pak packaging as reinforcement of polyester based composites. Construction and Building Materials, 157, 1018-1023. DOI:10.1016/j.conbuildmat.2017.09.181

Castro, M. Dos S., Fantim, W. M., Condotta, R., Gomes, E. L., Poço, & J. G. DA R. (2017). Análise estatística aplicada aos parâmetros de síntese de faujasita Na-X. The Journal of Engineering and Exact Sciences, 3 (2), 254-266.

CEMPRE. Compromisso Empresarial para Reciclagem. (2019). Ficha técnica. http://cempre.org.br/artigo-publicacao/ficha-tecnica/id/9/embalagens-longa-vida.

Cerqueira, M. H. (2007). Placas e telhas produzidas a partir da reciclagem do polietileno /alumínio presentes nas embalagens Tetra Pak. http://recicoleta.com.br/artigos/Telhas.pdf.

Chae, Y., & An, Y. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 240, 387-395. https://doi.org/10.1016/j.envpol.2018.05.008.

Chai, Y.J., Meng, H.X., Jia, Y.Y., Shen, J., Huang, Y.M., & Wang, N. (2014). Hydrogen generation by aluminum corrosion in cobalt (II) chloride and nickel (II) chloride aqueous solution. Energy, 68, 204-209. https://doi.org/10.1016/j.energy.2014.03.011.

CONAMA. Conselho Nacional do Meio Ambiente (2005). Resolução CONAMA nº 357, de 17 de março de 2005. http://www.siam.mg.gov.br/sla/download.pdf?idNorma=2747.

Fernandes, J., Danielewicz, R., & Secco, J. (2014). Isolamento térmico de residências através da reutilização de embalagens tetra pak. Revista Brasileira de Extensão Universitária, 5, 13-17.

Gajadhur, M., & Łuszczyńska, A. (2017). Influence of pearlescent pigments on light-fastness of water-based flexographic inks. Dyes and Pigments, 138, 119–128. http://dx.doi.org/10.1016/j.dyepig.2016.11.033.

Hassanin, A. H., Candan, Z., Demirkir, C., & Hamouda, T. (2016). Thermal insulation properties of hybrid textile reinforced biocomposites from food packaging waste. Journal of Industrial Textiles, 47, 1024–1037.

Hiraki, T., Yamauchi, S., Iida, M., Uesugi, H., & Akiyama, T. (2007). Process for Recycling Waste Aluminum with Generation of High-Pressure Hydrogen. Environmental Science & Technology, 41 (12), 4454–4457. http://dx.doi.org/10.1021/es062883l.

Jaerger, S., Zawadzki, S.F., Leuteritz, A., & Wypych, F. (2017). New Alternative to Produce Colored Polymer Nanocomposites: Organophilic Ni/Al and Co/Al Layered Double Hydroxide as Fillers into Low-Density Polyethylene. Journal of the Brazilian Chemical Society, 28 (12), 2391-2401. http://dx.doi.org/10.21577/0103-5053.20170093.

Jain, A., Goyal, R., Singh, S., & Pradhan, L. (2016). Municipal Solid Waste Management In India: A Case Study Of Post Consumed Tetra Pak Cartons In Delhi NCR. IIOAB Journal, 7 (11), 54-59.

Karaboyaci, M., Elbek, G. G., Kilic, M., & Sencan, A. (2017). Process Design for the Recycling Of Tetra Pak Components. European Journal of Engineering and Natural Sciences, 2 (1), 126-129.

Mahinroostaa, M., & Allahverdia, A. (2018). Hazardous aluminum dross characterization and recycling strategies: A critical review. Journal of Environmental Management Elsevier, 1 (223), 452-468. doi: 10.1016/j.jenvman.2018.06.068.

Neves, F. L. (1999). Reciclagem de embalagens cartonadas Tetra Pak. Revista ‘O Papel’. 2, 38-45.

Pagliarini, J., Piovezan, T. C., Dominguini, L., Mello, J. M. M., Silva, L. L., & Fiori, M. A. (2016). Extração Química De Adesivos De Interface De Filmes Poliméricos De Embalagens Multicamadas. XXI Congresso Brasileiro De Engenharia Química - COBEQ.

Parks, J. L., & Edwards, M. (2005). Boron in the environment. Critical Reviews in Environmental Science and Technology. 35 (2), 81-114. http://dx.doi.org/10.1080/10643380590900200.

Pereira A. S., Shitsuka, D. M., PARREIRA, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.

Portela, C. I., Cho, L. Y., & Liu, A. S. (2016). Extração de Aluminato de Embalagens Plásticas Metalizadas. XX Encontro Latino Americano de Iniciação Científica, XVI Encontro Latino Americano de Pós-Graduação e VI Encontro de Iniciação à Docência – Universidade do Vale do Paraíba.

Quintero, M., Rodríguez, P., Rubio, J., Jaramillo, L., & Nuñez-Moreno, L. (2017). Bending and compression characterization of hollow structural elements made of recycled Tetra Pak®-Based Boards (RTPBB) and an approximated calculation of the carbon footprintinvolved in their production. Revista Ingeniería de Construcción RIC, 32 (3), 131-148.

Santos, T. A., Tamanaga, B., Rogick, A. A. A., & Miyamaru, E. S. (2017). Influence of granulometry of waste from Long-Life packaging in the preparation of drywall boards. Saúde, Meio Ambiente e Sustentabilidade. 12 (1), 40-55.

Sonmez, S. (2011). Interactive Effects of Copolymers and Nano-Sized Pigments on Coated Recycled Paperboards in Flexographic Print Applications. Asian Journal of Chemistry, 23 (6), 2609.

Souza Santos, P. (1985). Óxidos e Hidróxidos de alumínios naturais: uma revisão. Parte II – Gibsita, Baierita e Nordstrandita. Cerâmica, 31 (182), 29-36.

Uemura, M. R. B., & Comini, G. M. (2017). A Logística Reversa de Embalagens Longa Vida e a Redução de Emissão de Gases de Efeito Estufa: O Caso Tetra Pak. Seminários em Administração.

Wang, D., Yang, B., Chen, Q., Chen, J., Su, L., Chen, P., Zheng, Z., Miao, J., Qian, J., Xia, R., & Shi, Y. (2019). A facile evaluation on melt crystallization kinetics and thermal properties of low-density polyethylene (LDPE)/Recycled polyethylene terephthalate (RPET) blends. Advanced Industrial and Engineering Polymer Research, 2, 126-135. https://doi.org/10.1016/j.aiepr.2019.05.002

Wefers, K., & Misra, C. (1987). Oxides and hydroxides of aluminum. Alcoa Technical Paper, 19. Pennsylvania: Aluminum Company of American.

Wefers, K. (1990). Nomenclature, Preparation and properties of aluminum oxydes, oxydehydroxides and trihydroxides. In: Hard, L.D.; Lense, E. (Ed). Alumina Chemicals. Ohio: American Ceramics Society, 13-22.

Xie, M., Bai, W., Bai, L., Sun, X., Lu, Q., Yan, D., & Qiao, Q. (2016). Life cycle assessment of the recycling of Al-PE (a laminated foil made from polyethylene and aluminum foil) composite packaging waste. Journal of Cleaner Production, 112, 4430–4434. doi:10.1016/j.jclepro.2015.08.067.

Yu, G., Cheng, Y., & Zhang, X. (2019). The Dielectric Properties Improvement of Cable Insulation Layer by Different Morphology Nanoparticles Doping into LDPE. Coatings, 9 (3), 204. https://doi.org/10.3390/coatings9030204.

Zhang, S., Luo, K., Zhang, L., Mei, X., Cao, S., & Wang, B. (2014). Interfacial separation and characterization of Al-PE composites during delamination of post-consumer Tetra Pak materials. Journal of Chemical Technology & Biotechnology, 90 (6), 1152–1159. http://dx.doi.org/10.1002/jctb.4573.

Publicado

10/10/2021

Cómo citar

PAULETTI, H. C. .; VICARI, P.; KLAUCK, M. G. .; PATUSSI, P. .; CIMA, L. B. .; COLPANI, G. L. .; SILVA, L. L. .; ZANETTI, M. .; MELLO, J. M. M. de .; FIORI, M. A. . Estudio del processo de reciclaje de residuos de polímero-aluminio de envases de carton. Research, Society and Development, [S. l.], v. 10, n. 13, p. e240101320592, 2021. DOI: 10.33448/rsd-v10i13.20592. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20592. Acesso em: 30 jun. 2024.

Número

Sección

Ingenierías