Ficorremediación de aguas residuales de piscifactorías por Chlorella sorokiniana y microalgas autóctonas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i13.20723

Palabras clave:

Acuicultura; Bioensayo; Biotecnología ambiental; Chlorophyceae; Cinética.

Resumen

Con el aumento desordenado de los problemas ambientales globales, el cultivo de organismos acuáticos es un camino prometedor para la producción sostenible de alimentos. La calidad del agua, tanto a la entrada como a la salida de la producción de animales acuáticos, debe mantenerse de acuerdo con los parámetros especificados por la legislación local. Este estudio tuvo como objetivo investigar la eliminación de contaminantes de las aguas residuales de la piscicultura asociados con la producción de biomasa de microalgas de agua dulce. Se utilizaron seis tratamientos completamente aleatorizados por triplicado: con adición de microalgas C. sorokiniana en aguas residuales de piscifactoría (W+ Cs), adición de C. sorokiniana en aguas residuales enriquecidas con fertilizante NPK (W+F+Cs) o vinaza de caña de azúcar -de- azúcar (W+V +Cs), solo aguas residuales (W), aguas residuales suplementadas con fertilizante (W+F) o vinaza (W+V). El agua residual se utilizó in natura para permitir el desarrollo de microalgas autóctonas. La microalga C. sorokiniana creció rápidamente en efluentes enriquecidos con NPK y vinaza. Después de 28 días de bioensayo, las concentraciones de varios contaminantes en el agua se redujeron: zinc (20-88%), plomo (5-83%), aluminio (56-75%), manganeso (56-72%), cadmio (9-52%), calcio (16-24%) y magnesio (12-33%). Nuestros resultados indicaron que la producción de biomasa de microalgas se puede integrar con el tratamiento de los efluentes de la piscicultura para reducir la carga ambiental y aumentar la bonificación económica por adoptar un método de producción sostenible. Sin embargo, nuestros resultados también indicaron la importancia de introducir una cepa de microalgas con alto rendimiento productivo y complementar las aguas residuales para obtener biomasa rápida.

Citas

Abdul Hamid, S. H., Lananan, F., Din, W.N.S., Lam, S.S., Khatoon, H., Endut, A. E. & Jusoh, A. (2014). Harvesting microalgae, Chlorella sp. By bio-flocculation of Moringa oleifera seed derivatives from aquaculture wastewater phytoremediation. International Biodeterioration & Biodegradation, 95, 270–275. 10.1016/j.ibiod.2014.06.021

Andreotti, V., Chindris, A., Brundu, G., Vallainc, D., Francavilla, M. & García, J. (2017). Bioremediation of aquaculture wastewater from Mugil cephalus (Linnaeus, 1758) with different microalgae species. Journal of Chemical Ecology, 33, 750–776. 10.1080/02757540.2017.1378351

Ansilago, M., Otonelli, F. & Carvalho, E. M. (2016). Cultivo da microalga Pseudokirchneriella subcapitata em escala de bancada utilizando meio contaminado com metais pesados. Engenharia sanitária e ambiental, 21, 3, 10.1590/S1413-41522016124295

American Public Health Association- APHA (2005) Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.

Ballester-Moltó, M., Sanchez-Jerez, P., Cerezo-Valverde, J. & Aguado-Giménez, F. (2017). Particulate waste outflow from fish-farming cages. How much is uneaten feed? Marine Pollution Bulletin, 119, 23–30. 10.1016/j.marpolbul.2017.03.004

Banerjee, G. & Ray, A. K. (2017). The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115, 66–77. 10.1016/j.rvsc.2017.01.016

Barnharst, T., Rajendran, A. & Hu, B. (2018). Bioremediation of synthetic intensive aquaculture wastewater by a novel feed-grade composite biofilm. International Biodeterioration & Biodegradation, 126, 131–142. 10.1016/j.ibiod.2017.10.007

Barros, A. I., Gonçalves, A. L., Simões, M. & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: A review. Renewable & Sustainable Energy Reviews – Journal, 41, 1489–1500. 10.1016/j.rser.2014.09.037

Blanco-Carvajal, E., González-Delgado, A. D., García-Martínez, J. B., Sánchez-Galvis, E. & Barajas-Solano, A. F. (2017). Bioremediation of Aquaculture Wastewater Using Microalgae Chlorella vulgaris. Contemporary Engineering Sciences, 10 (45), 1701–1708. https://doi.org/10.12988/ces.2017.712198

Candido, C. & Lombardi, A. T. (2017). Growth of Chlorella vulgaris in treated conventional and biodigested vinasses. Journal of Applied Phycology. 29, 45–53. 10.1007/s10811-016-0940-2

Carvalho, E. M., Ottonelli, F., Ansilago, M., Godoy, H. C., Nakagaki, J. M. & Ramires, I. (2012). Growth kinetics of the microalga Pseudokirchneriella subcapitata (Korshikov) Hindak (Chlorophyceae) in natural water enriched with NPK fertilizer. Biochemistry and Biotechnology Reports, 1, 14–18. 10.5433/2316-5200.2012v1n2p14

Dias, G., Hipólito, M., Santos, F., Lourega, R., Mattia, J., Eichler, P. & Alves, J. (2019). Biorremediação de efluentes por meio da aplicação de microalgas – uma revisão. Química. Nova, 42(8), 891-899. 10.21577/0100-4042.20170393

Food and Agriculture Organization- FAO (2018). El estado mundial de la pesca y la acuicultura 2018. Cumplir los objetivos de desarrollo sostenible. Roma. Licencia: CC BY-NC-SA 3.0 IGO.

Gani, P., Mohamed Sunar, N., Matias-Peralta, H., Abdul Latiff, A. A., Parjo, U. K. E. & Oyekanmi, A, A. (2017). Green Approach in the Bio-removal of Heavy Metals from wastewaters. MATEC Web of Conferences, 103, 10.1051/matecconf/201710306007

Gautam, R. K., Sharma, S. K., Mahiya, S. E. & Chattopadhyaya, M. C. (2014). Contamination of Heavy. Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation. In: Heavy Metals in Water: Presence, Removal and Safety. Edited by Sanjay K. Sharma. The Royal Society of Chemistry. 1-24 Published by the Royal Society of Chemistry. 10.1039/9781782620174-00001

Jung, J., Damusaru, J. Hyacinth, Park, Y., Kim, K., Seong, M., Je, H., & Bai, S. C. (2017). Autotrophic biofloc technology system (ABFT) using Chlorella vulgaris and Scenedesmus obliquus positively affects performance of Nile tilapia (Oreochromis niloticus). Algal research. 27, 259-264. 10.1016/j.algal.2017.09.021

Kim, D. Y., Lee, K., Lee, J., Lee, Y. H., Han, J. I., Park, J. Y. & Oh, Y. K. (2017). Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery. Bioresource Technology, 239, 190–196. 10.1016/j.biortech.2017.05.021

Lal, A. E., & Das, D. (2016). Biomass production and identification of suitable harvesting technique for Chlorella sp. MJ 11/11 and Synechocystis PCC 6803.3. Biotechnology, 6, 41. 10.1007/s13205-015-0360-z

Liu, Y., Lv, J., Feng, J., Liu, Q., Nan, F. & Xie, S. (2018). Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. Journal of Chemical Technology & Biotechnology, 10.1002/jctb.5837.

Lizzul, A.M., Hellier, P., Purton, S., Baganz, F., Ladommatos, N. & Campos, L. (2014). Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresource Technology. 151, 12–18. 10.1016/j.biortech.2013.10.040

Lugo, L. A., Thorarinsdottir, R. I., Bjornsson, S., Palsson, O. P., Skulasson, H., Johannsson, S. & Brynjolfsson, S. (2020). Remediation of aquaculture wastewater using the microalga Chlorella sorokiniana. Water, 12, 3144. 10.3390/w12113144

Marques, S. S. I., Nascimento, I. A., Almeida, P. F. & Chinalia, F. A. (2013). Growth of Chlorella vulgaris on Sugar cane vinasse: The Effect of Anaerobic Digestion Pretreatment. Applied Biochemistry and Biotechnology, 171, 1933–1943. 10.1007/s12010-013-0481-y

Mcginn, P. J., Dickinson, K. E., Park, K. C., Whitney, C. G., Macquarrie, S. P., Black, F. J. & O'leary, S. J. B. (2012). Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Research, 1, 155–165. 10.1016/j.algal.2012.05.001

Mostafa, S. S. M. (2012). Microalgal Biotechnology: Prospects and Applications, Plant Science, Nabin Kumar Dhal and Sudam Charan Sahu, IntechOpen, 10.5772/53694.

Nunes, I. V. O., Inoue, C. H. B., Sousa, A. E. R., Carvalho, J. C. M., Gomes, A. M. A. & Matsudo, M. C. (2021). Tertiary treatment of dairy industry wastewater with production of Chlorella vulgaris biomass: evaluation of effluent dilution. Brazilian Journal of Environmental Sciences, 56 (2), 365-373. 10.5327/z21769478787

Ortegón, G. P., Arboleda, F. M., Candela, L., Tamoh, K. & Valdes-Abellan, J. (2016). Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia). Science of the Total Environment, 539, 410–419. 10.1016/j.scitotenv.2015.08.153

Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G. & Simões, M. (2013). Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research. 20 (8), 5096–5105. 10.1007/s11356-013-1791-x

Sathasivam, R., Radhakrishnan, R., Hashem, A. & AbdAllahd, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Journal of Biological Sciences, 26 (4), 709-722. 10.1016/j.sjbs.2017.11.003 (article in press).

Satpal & Khambete, A. K. (2016). Waste Water Treatment Using Micro-Algae - A review Paper. International Engineering Management & Applied Science Journal. 4, 2.

Shivagangaiah, P. C., Sanyal, D., Dasgupta, S. & Banik, A. (2021). Phycoremediation and photosynthetic toxicity assessment of lead by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidos. Physiologia Plantarum, 10.1111/ppl.13368

Singh, P. S., Singh, M. E. & Taggar, M. S. 2017. Mass cultivation and harvesting of microalgae (Chlorella sorokiniana) for biomass and lipid production. International Journal of Chemical Science, Stud. 5 (5), 173–178.

Soto-Jiménez, M. F., (2011). Transferencia de elementos traza en tramas tróficas acúaticas. Hidrobiológica. 21, 239–248.

United States Environmental Protection Agency- USEPA (1986). Quality Criteria for Water. Office of Water Regulations and Standards Criteria Division, <https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=00001MGA.pdf>.

Wuang, S. C., Khin, M. C., Chua, P. Q. D. & Luo, Y. D. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research. 15, 59–64. 10.1016/j.algal.2016.02.009

Descargas

Publicado

11/10/2021

Cómo citar

CARVALHO, E. M. de; SANTOS, C. R. dos .; ANSILAGO, M.; MENEGAZZO, M. L. .; NUNES, N. S. P. Ficorremediación de aguas residuales de piscifactorías por Chlorella sorokiniana y microalgas autóctonas. Research, Society and Development, [S. l.], v. 10, n. 13, p. e259101320723, 2021. DOI: 10.33448/rsd-v10i13.20723. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20723. Acesso em: 20 dic. 2024.

Número

Sección

Ciencias Agrarias y Biológicas