Evaluación de la estabilidad del huevo de codorniz en polvo obtenido por liofilización

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i14.20930

Palabras clave:

Aves; Polvo de huevo; Almacenamiento; Permeabilidad del empaque.

Resumen

El objetivo de este estudio fue producir huevo de codorniz en polvo mediante liofilización y evaluar su estabilidad en diferentes tipos de empaques flexibles (polietileno de baja densidad, polipropileno y polipropileno pigmentado) a alta humedad relativa (aproximadamente 81%), a 25 °C durante 59 días de almacenamiento. Los empaques se evaluaron para determinar la permeabilidad al vapor de agua y los huevos liofilizados se analizaron para determinar su higroscopicidad y densidad aparente (tiempo inicial), y para determinar el pH, la humedad, la actividad del agua y el color (hasta el final del almacenamiento). Se utilizaron modelos de isotermas de sorción de GAB, BET y Peleg para predecir la humedad en la monocapa de los polvos. Para todos los empaques, el huevo liofilizado mostró una ligera oscilación en las coordenadas de color, una reducción del pH y un aumento de la humedad y la actividad del agua durante el almacenamiento. Ningún empaque evaluado fue suficientemente eficaz como barrera contra la humedad. Los modelos GAB y BET se ajustan mejor a los datos experimentales para el huevo de codorniz liofilizado y los valores de humedad estimados en la monocapa fueron 0.0333 y 0.0227 g H2O/g sólidos, respectivamente. El huevo de codorniz liofilizado tiene potencial industrial, sin embargo, es susceptible a cambios durante el almacenamiento cuando se expone a alta humedad relativa y se almacena en los empaques probados. Comercialmente, como este producto puede venderse en regiones con diferentes temperaturas y humedad relativa, es fundamental considerar el uso de conservantes o agentes antihumectantes.

Citas

Arthur, J. & Bejaei, M. (2017). Quail Eggs. In P. Y. Hester (Ed.). Egg Innovations and Strategies for Improvements (p. 13-21). Academic Press. https://doi.org/10.1016/B978-0-12-800879-9.00002-0

Beck, J., Ledl, F., Sengl, M. & Severin, T. (1990). Formation of acids, lactones and esters through the Maillard reaction. Zeitschrift für Lebensmittel Untersuchung und Forschung, v. 190 (3), 212-216. 10.1007/bf01192968

Chełmońska, B., Jerysz, A., Łukaszewicz, R., Kowalczyk, A. & Malecki, I. (2008). Semen collection from Japanese quail (Coturnix japonica) using a teaser female. Turkish Journal of Veterinary and Animal Sciences, 32 (1), 19–24.

Chudy, S., Pikul, J., Rudzińska, M. & Makowska, A. (2015). The effect of storage on physicochemical properties of spray-dried milk, egg and milk-egg mixture. Acta Agrophysica, v. 22 (1), 17-26.

Conceição, M. C., Fernandes, T. N. & Resende, J. V. (2016). Stability and microstructure of freeze-dried guava pulp (Psidium guajava L.) with added sucrose and pectin. Journal of Food Science and Technology, 53 (6), 2654–2663. 10.1007/s13197-016-2237-5

Dufour, D., O’Brien, G. M. & Best, R. (1996). Cassava flour and starch: progress in research and development. Centro Internacional de Agricultura Tropical.

FAO - The Food and Agriculture Organization of the United Nations. (2021). Gateway to poultry production and products: Poultry species. http://www.fao.org/poultry-production-products/production/poultry-species/en/

Fitzpatrick, J. (2013). Powder properties in food production systems. In B. Bhandari et al. (Eds.). Handbook of Food Powders: Processes and Properties. (p. 285-308). Woodhead Publishing. https://doi.org/10.1533/9780857098672.2.285

Gil, A. C. (2008). Métodos e técnicas de pesquisa social (6a ed.). Atlas.

Greenspan, L. (1977). Humidity Fixed Points of Binary Saturated Aqueous Solutions. Physics and Chemistry, 81 A (1), 89-96.

Henríquez, C., Córdova, A., Lutz, M. & Saavedra, J. (2013). Storage stability test of apple peel powder using two packaging materials: High-density polyethylene and metalized films of high barrier. Industrial Crops and Products, 45, 121-127. http://dx.doi.org/10.1016/j.indcrop.2012.11.032

Instituto Adolfo Lutz. (2008). Normas analíticas do instituto Adolfo Lutz: métodos químicos e físicos para análise de alimentos. Instituto Adolfo Lutz.

Jayaraman, K. S. & Gupta, D. K. (2006). Drying of Fruits and Vegetables. In A. S. Mujumdar (Ed.). Handbook of Industrial Drying (p. 606-631), 3. ed. CRC Press.

Koç, M., Koç, B., Yilmazer, M. S., Ertekin, F. K., Susyal, G. & Bağdatlıoğlu, N. (2011a). Physicochemical Characterization of Whole Egg Powder Microencapsulated by Spray Drying. Drying Technology, 29 (7), 780-788. 10.1080/07373937.2010.538820

Koç, M., Koç, B., Susyal, G., Yilmazer, M. S., Bağdatlioğlu, N. & Kaymak-Ertekin, F. (2011b). Improving Functionality of Whole Egg Powder by the Addition of Gelatine, Lactose, and Pullulan. Journal of Food Science, 76 (9). 10.1111/j.1750-3841.2011.02420.x

Koç, B., Koç, M., Güngör, O., Sakin-Yilmazer, M., Kaymak-Ertekin, F., Susyal, G. & Bağdatlioğlu, N. (2012). Effects of Formulation on Stability of Spray Dried Egg. Drying Technology, v. 30 (1), 63-71. 10.1080/07373937.2011.620202

Köche, J. C. (2011). Fundamentos de metodologia científica: teoria da ciência e iniciação à pesquisa. Vozes.

Lechevalier, V., Nau, F., & Jeantet, R. (2013). Powdered egg. In B. Bhandari et al. (Eds.). Handbook of Food Powders: Processes and Properties (p. 484-512). Woodhead Publishing. https://doi.org/10.1533/9780857098672.3.484

Lieu, Eng-Hwa, Froning, G. W. & Dam, R. (1978). Effect of Storage on Lipid Composition and Functional Properties of Dried Egg Products. Poultry Science, v. 57, 912-923. https://doi.org/10.3382/ps.0570912

Martins, S. I. F. S., Jongen, W. M. F. & Boekel, M. A. J. S. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology, v. 11 (9–10), 364-373. https://doi.org/10.1016/S0924-2244(01)00022-X

Moura, A. M. A., Oliveira, N. T. E., Thiebaut, J. T. L. & Melo, T. V. (2008). Effect of storage temperature and type of package on the internal quality of eggs from japanese quails (Coturnix japonica). Ciência e Agrotecnologia, 32 (2), 578-583.

Oliveira, D. M., Lima, C. G., Clemente, E., Afonso, M. R. A. & Costa, J. M. C. (2015). Stability of bioactive compounds and quality parameters of grugru palm powder (Acrocomia aculeata) in different drying conditions. Journal of Food Quality, 38, 94-102. 10.1111/jfq.12126

Ortiz, C. M., Moraes, J. O., Vicente, A. R., Laurindo, J. B. & Mauri, A. N. (2017). Scale-up of the production of soy (Glycine max L.) protein films using tape casting: Formulation of film-forming suspension and drying conditions. Food Hydrocolloids, v. 66, 110-117. https://doi.org/10.1016/j.foodhyd.2016.12.029

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica UFSM. https://repositorio.ufsm.br/bitstream/handle /1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Rahman, M. S. (2009). Food properties handbook. (2a ed.) CRC Press.

Raitio, R., Orlien, & Skibsted, L. H. (2011). Storage stability of cauliflower soup powder: The effect of lipid oxidation and protein degradation reactions. Food Chemistry, 128, 371–379. 10.1016/j.foodchem.2011.03.038

Rao, Q. & Labuza, T. P. (2012). Effect of moisture content on selected physicochemical properties of two commercial hen egg white powders. Food Chemistry, 132, 373-384. 10.1016/j.foodchem.2011.10.107

Rao, Q., Rocca-Smith, J. R., Schoenfuss, T. C. & Labuza, T. P. (2012). Accelerated shelf-life testing of quality loss for a commercial hydrolysed hen egg white powder. Food Chemistry, 135, 464-472. http://dx.doi.org/10.1016/j.foodchem.2012.05.025

Sangamithra, A., Venkatachalam, S., John, S. G. & Kuppuswamy, K. (2014). Foam mat drying of food materials: a review. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.12421

Seth, D., Dash, K. K., Mishra, H. N. & Deka, S. C. (2018). Thermodynamics of sorption isotherms and storage stability of spray dried sweetened yoghurt powder. Journal of Food Science and Technology, 55 (10), 4139–4147. https://doi.org/10.1007/s13197-018-3340-6

Shanaway, M. M. (1994). Quail production systems: a review. FAO.

Sokhansanj, S. & Jayas, D. S. (2006). Drying of Foodstuffs. In A. S. Mujumdar (Ed.). Handbook of Industrial Drying (p. 522-5453), 3. ed. CRC Press.

Sun, C., Liu, J., Yang, N. & Xu, G. (2019). Egg quality and egg albumen property of domestic hen, duck, goose, turkey, quail, and pigeon. Poultry Science, 98 (10), 4516-4521. https://doi.org/10.3382/ps/pez259

Thélie, A., Grasseau, I., Grimaud-Jottreau, I., Seigneurin, F. & Blesbois, E. (2019). Semen biotechnology optimization for successful fertilization in Japanese quail (Coturnix japonica). Theriogenology, 139, 98-105. https://doi.org/10.1016/j.theriogenology.2019.07.028

Tonon, R. , Brabet, C. & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88 (3), 41-418. https://doi.org/10.1016/j.jfoodeng.2008.02.029

Tonon, R. , Baroni, A. F., Brabet, C., Gibert, O., Pallet, D. & Hubinger, M. D. (2009). Water sorption and glass transition temperature of spray dried açaí (Euterpe oleracea Mart.) juice. Journal of Food Engineering, 94, 215–221. 10.1016/j.jfoodeng.2009.03.009

Udomkun, P., Nagle, M., Argyropoulos, D., Mahayothee, B, Latif, S. & Müller, J. (2016). Compositional and functional dynamics of dried papaya as affected by storage time and packaging material. Food Chemistry, 196, 712–719. http://dx.doi.org/10.1016/j.foodchem.2015.09.103

USDA - United States Department of Agriculture. (2021a). FoodData Central Search Results: Egg, quail, whole, fresh, raw. https://fdc.nal.usda.gov/fdc-app.html#/food-details/172191/nutrients

USDA - United States Department of Agriculture. (2021b). FoodData Central Search Results: Egg, whole, raw, fresh. https://fdc.nal.usda.gov/fdc-app.html#/food-details/171287/nutrients

Descargas

Publicado

30/10/2021

Cómo citar

NUNES , M. A.; MOREIRA, C. A.; SOARES, L. S.; ZOTARELLI, M. F.; LIMA, M. de. Evaluación de la estabilidad del huevo de codorniz en polvo obtenido por liofilización. Research, Society and Development, [S. l.], v. 10, n. 14, p. e184101420930, 2021. DOI: 10.33448/rsd-v10i14.20930. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20930. Acesso em: 30 jun. 2024.

Número

Sección

Ciencias Agrarias y Biológicas