Membrana cerámica de bajo costo para tratamiento de efluentes aceitosos
DOI:
https://doi.org/10.33448/rsd-v10i13.21071Palabras clave:
Membrana de bajo costo; Membrana cerámica; Brasgel arcilla; Emulsión de aceite de agua.Resumen
La contaminación del agua es uno de los mayores desafíos de la sociedad. Varios contaminantes entran en contacto con grandes volúmenes de agua, comprometiendo sus parámetros de calidad. Entre los contaminantes, destaca la gran cantidad de actividades industriales responsables de la generación de efluentes oleosos por sus impactos sobre el medio ambiente, afectando, por ejemplo, el mantenimiento de la vida marina y la productividad de los suelos. Entre las técnicas de tratamiento, destaca el uso de membranas cerámicas por su alta eficiencia en el tratamiento de efluentes aceitosos, principalmente emulsiones aceite-agua. En línea con el desarrollo de la química verde, asociada al bajo costo, este trabajo tiene como objetivo la preparación de membranas cerámicas con arcilla brasgel, abundante en el territorio de Paraíba. La arcilla se caracterizó mediante las técnicas de Difracción de Rayos X (XRD), Espectroscopía de Fluorescencia de Rayos X de Dispersión de Energía, Espectroscopia infrarroja, Adsorción Física de Nitrógeno, Análisis Térmico. La membrana se obtuvo mediante la técnica de compactación seca uniaxial y sinterizado a 650 °C, realizándose flujo de agua y flujo de permeado para obtener el coeficiente de rechazo de la membrana. Los resultados obtenidos indican que la arcilla brasgel tiene todas las características correspondientes a la smectite, y la membrana de bajo costo tuvo una alta capacidad de remoción, 100.00 %, lo que la hace viable para el tratamiento de emulsiones aceite-agua.
Citas
Adebajo, M. O., Frost, R. L., Kloprogge, J. T., Carmody, O., & Kokot, S. (2003). Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. Journal of Porous Materials, 10(3), 159–170. https://doi.org/10.1023/A:1027484117065
Akçay, M. (2004). Characterization and determination of the thermodynamic and kinetic properties of p-CP adsorption onto organophilic bentonite from aqueous solution. Journal of Colloid and Interface Science, 280(2), 299–304. https://doi.org/10.1016/j.jcis.2004.07.030
Al-Mutairi, N., Bufarsan, A., & Al-Rukaibi, F. (2008). Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere, 74(1), 142–148. https://doi.org/10.1016/j.chemosphere.2008.08.020
Alzahrani, S., & Mohammad, A. W. (2014). Challenges and trends in membrane technology implementation for produced water treatment: A review. Journal of Water Process Engineering, 4(C), 107–133. https://doi.org/10.1016/j.jwpe.2014.09.007
Araújo, A. B. de F. S., Carmo, E. S. do., Silva, L. R. B., Barbosa, T. L. A., & Rodrigues, M. G. F. (2021). Produção de membrana de baixo custo e sua utilização no processo de separação emulsão óleo/água. In Anais do IV CONEPETRO E VI WEPETRO.
Auerbach, S. M., Carrado, K. A., & Dutta, P. K. (2003). Handbook of Zeolite Science and Technology.
Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2018). Contaminants removal in wastewater using membrane adsorbents zeolite Y/Alpha-Alumina. Materials Science Forum, 912 MSF, 12–15. https://doi.org/10.4028/www.scientific.net/MSF.912.12
Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2019). Influence of the methodology on the formation of zeolite membranes MCM-22 for the oil/water emulsion separation. Ceramica, 65(376), 531–540. https://doi.org/10.1590/0366-69132019653762676
Barbosa, A. dos S., Barbosa, A. dos S., & Rodrigues, M. G. F. (2015). Synthesis of MCM-22 zeolite membrane on a porous alumina support. Materials Science Forum, 805, 272–278. https://doi.org/10.4028/www.scientific.net/MSF.805.272
Barbosa, A. dos S., Barbosa, A. dos S., Barbosa, T. L. A., & Rodrigues, M. G. F. (2018). Synthesis of zeolite membrane (NaY/alumina): Effect of precursor of ceramic support and its application in the process of oil–water separation. Separation and Purification Technology, 200, 141–154. https://doi.org/10.1016/j.seppur.2018.02.001
Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2015). Synthesis of zeolite membrane (MCM-22/α-alumina) and its application in the process of oil-water separation. Desalination and Water Treatment, 56(13), 3665–3672. https://doi.org/10.1080/19443994.2014.995719
Barbosa, A. S., Barbosa, A. S., & Rodrigues, M. G. F. (2019). Y-type zeolite membranes: Synthesis by secondary by method and application in treatment of oily effluents. Materials Science Forum, 958 MSF, 23–28. https://doi.org/10.4028/www.scientific.net/MSF.958.23
Barbosa, T. L. A., Silva, F. M. N., Barbosa, A. S., Lima, E. G., Rodrigues, M. G. F., Federal, U., Grande, D. C., & Grande, C. (2020). Synthesis and application of a composite NaA zeolite / gamma-alumina membrane for oil-water separation process ( Síntese e aplicação de uma membrana compósita zeólita NaA / gama-alumina para o processo de separação de óleo / água ). Cerâmica, 66, 137–144.
Bergaya, F., Theng, B. K. G., & Lagaly, G. (2006). Handbook of Clay Science.
Brigatti, M. F., Galan, E., & Theng, B. K. G. (2006). Chapter 2 Structures and Mineralogy of Clay Minerals. In Developments in Clay Science (Vol. 1, Issue C, pp. 19–86). https://doi.org/10.1016/S1572-4352(05)01002-0
Chakrabarty, B., Ghoshal, A. K., & Purkait, M. K. (2008). Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. Journal of Membrane Science, 325(1), 427–437. https://doi.org/10.1016/j.memsci.2008.08.007
Chandradass, J., Kim, K. H., Bae, D. sik, Prasad, K., Balachandar, G., Divya, S. A., & Balasubramanian, M. (2009). Starch consolidation of alumina: Fabrication and mechanical properties. Journal of the European Ceramic Society, 29(11), 2219–2224. https://doi.org/10.1016/j.jeurceramsoc.2009.02.001
Cunha, R. S. S., Mota, J. D., Silva, F. M. N., & Rodrigues, M. G. F. (2019). Synthesis, characterization and evaluation of organophilic bofe clay for use in the removal of oil effluents. Materials Science Forum, 958 MSF, 17–22. https://doi.org/10.4028/www.scientific.net/MSF.958.17
Cunha, R. S. S., Mota, J. D., Mota, M. F., Rodrigues, M. G. F., & Machado, F. (2018). Preparation and characterization of tubular composite membranes and their application in water flow measurements. Materials Science Forum, 912 MSF, 263–268. https://doi.org/10.4028/www.scientific.net/MSF.912.263
De Angelis, L., & De Cortalezzi, M. M. F. (2013). Ceramic membrane filtration of organic compounds: Effect of concentration, pH, and mixtures interactions on fouling. Separation and Purification Technology, 118, 762–775. https://doi.org/10.1016/j.seppur.2013.08.016
Diraki, A., Mackey, H. R., Mckay, G., & Abdala, A. (2019). Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. Journal of Environmental Chemical Engineering, 7, 103106. https://doi.org/10.1016/j.jece.2019.103106
Do Carmo, E. S., Silva, L. R. B., Barbosa, T. L. A., & Rodrigues, M. G. F. (2020). Produção de membranas cerâmicas de baixo custo: influência da temperatura de sinterização. In Tecnologia, investigação, sustentabilidade e os desafios do século XXI (pp. 812–826).
Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1999). Standard Methods for Examination of Water & Wastewater, 20th ed. American Public Health Association, Baltimore
Ebrahimi, M., Kerker, S., Schmitz, O., Schmidt, A. A., & Czermak, P. (2017). Evaluation of the Fouling Potential of Ceramic Membrane Configurations Designed for the Treatment of Oilfield Produced Water. Separation Science and Technology. https:// dx.doi.org/10.1080/01496395.2017.1386217
Elanchezhiyan, S. S., Prabhu, S. M., & Meenakshi, S. (2018). Effective adsorption of oil droplets from oil-in-water emulsion using metal ions encapsulated biopolymers: Role of metal ions and their mechanism in oil removal. International Journal of Biological Macromolecules, 112, 294-305. https://doi.org/10.1016/j.ijbiomac.2018.01.118
Eren, E. (2008). Removal of copper ions by modified Unye clay, Turkey. Journal of Hazardous Materials, 159(2–3), 235–244. https://doi.org/10.1016/j.jhazmat.2008.02.035
Foletto, E. L., Kuhnen, N. C., & José, H. J. (2000). Síntese da zeólita ZSM-5 e suas propriedades estruturais após troca iônica com cobre. Cerâmica, 46(300), 210–213. https://doi.org/10.1590/s0366-69132000000400007
Gonzaga, A. C., Sousa, B. V., Santana, L. N. L., Neves, G. A., & Rodrigues, M. G. F. (2007). Study of the different methods in the preparation of Organoclays from the Bentonite with application in the petroleum Industry. Brazilian Journal of Petroleum and Gas, 1(1), 16–25.
Grim, R. E. (1968). Clay mineralogy.
Hair, M. (1967). Infrared Spectroscopy in Surface Chemistry.
Hajjaji, M., Kacim, S., Alami, A., El Bouadili, A., & El Mountassir, M. (2001). Chemical and mineralogical characterization of a clay taken from the Moroccan Meseta and a study of the interaction between its fine fraction and methylene blue. Applied Clay Science, 20(1–2), 1–12. https://doi.org/10.1016/S0169-1317(00)00041-7
Henderson, S. B., Grigson, S. J. W., Johnson, P., & Roddie, B. D. (1999). Potential impact of production chemicals on the toxicity of produced water discharges from North Sea oil platforms. Marine Pollution Bulletin, 38(12), 1141–1151. https://doi.org/10.1016/S0025-326X(99)00144-7
Hsieh, H. (1996). Inorganic Membranes for Separation and Reaction.
Kilpatrick, P. K. (2012). Water-in-crude oil emulsion stabilization: Review and unanswered questions. Energy and Fuels, 26(7), 4017–4026. https://doi.org/10.1021/ef3003262
Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E. J. M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65–79. https://doi.org/10.1016/j.memsci.2015.10.049
Kozak, M., & Domka, L. (2004). Adsorption of the quaternary ammonium salts on montmorillonite. Journal of Physics and Chemistry of Solids, 65(2–3), 441–445. https://doi.org/10.1016/j.jpcs.2003.09.015
Li, F., Yang, Y., Fan, Y., Xing, W., & Wang, Y. (2012). Modification of ceramic membranes for pore structure tailoring: The atomic layer deposition route. Journal of Membrane Science, 397–398, 17–23. https://doi.org/10.1016/j.memsci.2012.01.005
Li, W., Xing, W., & Xu, N. (2006). Modeling of relationship between water permeability and microstructure parameters of ceramic membranes. Desalination, 192(1–3), 340–345. https://doi.org/10.1016/j.desal.2005.07.042
Lima, R. Desenvolvimento de membranas cerâmicas tubulares com granito para a separação de índigo em efluente da indústria têxtil. (2014). Tese (Doutorado em Ciências e Engenharia de Materiais) – Universidade Federal de Campina Grande, Campina Grande.
Lorente-Ayza, M. M., Sánchez, E., Sanz, V., & Mestre, S. (2015). Influence of starch content on the properties of low-cost microfiltration ceramic membranes. Ceramics International, 41(10), 13064–13073. https://doi.org/10.1016/j.ceramint.2015.07.092
Manni, A., Achiou, B., Karim, A., Harrati, A., Sadik, C., Ouammou, M., Alami Younssi, S., & El Bouari, A. (2020). New low-cost ceramic microfiltration membrane made from natural magnesite for industrial wastewater treatment. Journal of Environmental Chemical Engineering, 8(4), 103906. https://doi.org/10.1016/j.jece.2020.103906
Martínez-Palou, R., Reyes, J., Cerón-Camacho, R., Ramírez-de-Santiago, M., Villanueva, D., Vallejo, A. A., & Aburto, J. (2015). Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsions-A proposed strategy for transporting extra heavy crude oils. Chemical Engineering and Processing: Process Intensification, 98, 112–122. https://doi.org/10.1016/j.cep.2015.09.014
Mestre, S., Gozalbo, A., Lorente-Ayza, M. M., & Sánchez, E. (2019). Low-cost ceramic membranes: A research opportunity for industrial application. Journal of the European Ceramic Society, 39(12), 3392–3407. https://doi.org/10.1016/j.jeurceramsoc.2019.03.054
Mota, M. F., Rodrigues, M. G. F., & Machado, F. (2014). Oil-water separation process with organoclays: A comparative analysis. Applied Clay Science, 99, 237–245. https://doi.org/10.1016/j.clay.2014.06.039
Mota, M. F., Machado, F., & Rodrigues, M. G. F. (2012). Influence of exchanged surfactant on the structure and adsorption properties of brazilian green mud clay. Materials Science Forum, 727–728, 1473–1478. https://doi.org/10.4028/www.scientific.net/MSF.727-728.1473
Oliveira, R. C. G. (1995). 120 p. Estudos de variáveis operacionais e interfaciais na flotação de óleo por gás dissolvido. Dissertação (Mestrado em Engenharia) – Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1995.
Padaki, M., Surya Murali, R., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A., Hilal, N., & Ismail, A. F. (2015). Membrane technology enhancement in oil-water separation. A review. Desalination, 357, 197–207. https://doi.org/10.1016/j.desal.2014.11.023
Pereira, K. R. O., Hanna, R. A., Ramos Vianna, M. M. G., Pinto, C. A., Rodrigues, M. G. F., & Valenzuela-Diaz, F. R. (2005). Brazilian organoclays as nanostructured sorbents of petroleum-derived hydrocarbons. Materials Research, 8(1), 77–80. https://doi.org/10.1590/s1516-14392005000100014
Pintor, A. M. A., Vilar, V. J. P., Botelho, C. M., S., & Boaventura, R. A. R. (2016). Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies. A critical review. Chemical Engineering Journal, 297, 229–255. https://doi.org/ 10.1016/j.cej.2016.03.121.
Rodrigues, M. G. F. (2003). Physical and catalytic characterization of smectites from Boa-Vista, Paraíba, Brazil. Cerâmica, 49(311), 146–150. https://doi.org/10.1590/s0366-69132003000300007
Rodrigues, S. C. G., Queiroz, M. B., Pereira, K. R. O., Rodrigues, M. G. F., & Valenzuela-Diaz, F. R. (2010). Comparative study of organophilic clays to be used in the gas & petrol industry. Materials Science Forum, 660–661, 1037–1042. https://doi.org/10.4028/www.scientific.net/MSF.660-661.1037
Rubio, J., Souza, M. L., & Smith, R. W. (2002). Overview of flotation as a wastewater treatment technique. Minerals Engineering, 15, 139–155.
Russel, J., & Fraser, A. (1994). Infrared methods. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, 11–67.
Ruthven, D. (1984). Principles of adsorption & adsorption processes.
Sajna, K. V., Sukumaran, R. K., Gottumukkala, L. D., & Pandey, A. (2015). Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresource Technology, 191, 133–139. https://doi.org/10.1016/j.biortech.2015.04.126
Scheibler, J. R., Santos, E. R. F., Barbosa, A. S., & Rodrigues, M. G. F. (2015). Performance of zeolite membrane (ZSM-5/γ-Alumina) in the oil/water separation process. Desalination and Water Treatment, 56(13), 3561–3567. https://doi.org/10.1080/19443994.2014.986536
Silva, F. M. do N., Lima, E. G., de Almeida Barbosa, T. L., & Rodrigues, M. G. F. (2019). Characterization and application of catalysts hard green clay and moo3/hard green clay in transesterification reaction of soybean oil. Materials Science Forum, 958 MSF, 29–34. https://doi.org/10.4028/www.scientific.net/MSF.958.29
Silva, L. R. B., Barbosa, T. L. A., & Rodrigues, M. G. F. (2021). Membrana zeolítica NaA : Preparação e aplicação para tratamento de emulsão óleo/água. In Anais do IV CONEPETRO E VI WEPETRO.
Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric Identification of Organic Compounds.
Souza-Santos, P. (1989). Ciência e Tecnologia de Argilas.
Suleimanov, R. R., Gabbasova, I. M., & Sitdikov, R. N. (2005). Changes in the properties of oily gray forest soil during biological reclamation. Izvestiia Akademii Nauk. Seriia Biologicheskaia / Rossiiskaia Akademiia Nauk, 32(1), 109–115.
Vasanth, D., Uppaluri, R., & Pugazhenthi, G. (2011). Influence of sintering temperature on the properties of porous ceramic support prepared by uniaxial dry compaction method using low-cost raw materials for membrane applications. Separation Science and Technology, 46(8), 1241–1249. https://doi.org/10.1080/01496395.2011.556097
Vilar, W. C. T., Brito, A. L. F., Laborde, H. M., Laborde, M., Rodrigues, M. G. F., & Ferreira, H. S. (2009). Ativação térmica e caracterização da argila chocolate visando sua aplicação como adsorvente na remoção de níquel. Revista Eletrônica de Materiais e Processos, 3(Rev. Eletrônica Mater. e Process.), 39–47. http://dema.ufcg.edu.br/revista/index.php/REMAP/article/viewArticle/117
Wang, C. C., Juang, L. C., Lee, C. K., Hsu, T. C., Lee, J. F., & Chao, H. P. (2004). Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 280(1), 27–35. https://doi.org/10.1016/j.jcis.2004.07.009
Wang, C., Jiang, X., Zhou, L., Xia, G., Chen, Z., Duan, M., & Jiang, X. (2013). The preparation of organo-bentonite by a new gemini and its monomer surfactants and the application in MO removal: A comparative study. Chemical Engineering Journal, 219, 469–477. https://doi.org/10.1016/j.cej.2013.01.028
Xi, Y., Mallavarapu, M., & Naidu, R. (2010). Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Applied Clay Science, 48(1–2), 92–96. https://doi.org/10.1016/j.clay.2009.11.047
Yang, G. C. C., & Tsai, C. M. (2008). Effects of starch addition on characteristics of tubular porous ceramic membrane substrates. Desalination, 233(1–3), 129–136. https://doi.org/10.1016/j.desal.2007.09.035
Yang, Y., Raza, A., Banat, F., & Wang, K. (2018). The separation of oil in water (O/W) emulsions using polyether sulfone & nitrocellulose microfiltration membranes. Journal of Water Process Engineering, 25, 113-117. https://doi.org/10.1016/j.jwpe.2018.07.007
Zuo, J. H., Gu, Y. H., Wei, C., Yan, X., Chen, Y., & Lang, W. Z. (2020). Janus polyvinylidene fluoride membranes fabricated with thermally induced phase separation and spray-coating technique for the separations of both W/O and O/W emulsions. Journal of Membrane Science, 595, 117475. https://doi.org/10.1016/j.memsci.2019.117475
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Leonardo Romero Brito Silva; Francisco Alex de Sousa Silva; Tellys Lins Almeida Barbosa; Meiry Gláucia Freire Rodrigues
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.