Identificación y perfil de resistencia a bacterias gramo positivas en el ambiente acuático
DOI:
https://doi.org/10.33448/rsd-v10i13.21182Palabras clave:
Correlación; Fármacos; Genes de resistencia; Panresistentes.Resumen
El río Meia Ponte - Goiás/Brasil, es responsable de beneficiar a cerca de 2 millones de personas en el estado de Goiás. Sin embargo, el aumento de la contaminación con eliminación de aguas residuales, productos químicos y restos de medicamentos ha contribuido al aumento de resistencia bacteriana y intercambio de genes de resistencia. El objetivo de este estudio fue aislar, identificar y analizar el perfil de resistencia de bacterias grampositivas presentes en aguas crudas y sedimentos del río Meia Ponte - Goiás. Las muestras se recolectaron de cuatro puntos de muestreo y se realizaron dos recolecciones, una en época seca y otra en época de lluvias. Se identificaron las bacterias aisladas, luego se realizó el antibiograma. Se aislaron un total de 75 cepas, 72,0% (54/75) de Streptococcus spp., 12,0% (9/75) de Staphylococcus spp., 9,3% (7/75) de Bacillus spp. y 6,7% (5/75) de Enterococcus spp. Además, el 52,0% (39/75) de las cepas aisladas procedían de agua cruda y el 48,0% (36/75) se aislaron del sedimento. Entre las muestras, cepas de Staphylococcus spp. y Bacillus spp. mostró mayor resistencia a los antimicrobianos, por otro lado, Enterococcus spp. mostró menos resistencia. Algunas cepas de Bacillus spp. y Streptococcus spp. presentó resistentes a múltiples fármacos, Staphylococcus spp. se mostró multirresistente y algunos panresistentes. En la correlación de Spearman Staphylococcus spp. y Streptococcus spp. aisladas, fueron que presentaron las correlaciones más significativas (p <0.05). Así, el estudio muestra la importancia de conocer el perfil de resistencia de este grupo de bacterias que el medio acuático.
Citas
Adesakin, T. A., Oyewale, A. T., Bayero, U., Mohammed, A. N., Aduwo, I. A., Ahmed, P. Z., Abubakar, N. D., &Barje, I. B. (2020). Assessment of bacteriological quality and physico-chemical parameters of domestic water sources in Samaru community, Zaria, Northwest Nigeria. Heliyon, 6(8), 1–13. https://doi.org/10.1016/j.heliyon.2020.e04773
Aditi, F. Y., Rahman, S. S., & Hossain, M. M. (2017). A Study on the Microbiological Status of Mineral Drinking Water. The Open Microbiol J, 11(1), 31–44. https://doi.org/10.2174/1874285801711010031
Amarasiri, M., Sano, D., & Suzuki, S. (2019). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit Rev Sci Environ Technol, 50(19), 2016–2059. https://doi.org/10.1080/10643389.2019.1692611
ANVISA. (2005). Performance Standards for Testing Antimicrobial Sensitivity: 15th Information Supplement (2005). Agência Nacional de Vigilância Sanitária, Brazil (ANVISA), 25 n° 1, 1–177.
ANVISA. (2013). Manual de Microbiologia Clínica para o Controle de Infecções Relacionadas à Assistência à Saúde. Módulo 6: Detecção e identificação e bactérias de importância médica. Agência Nacional de Vigilância Sanitária, Brazil (ANVISA), 6, 1–93.
APHA. (2017). Standard Methods for the examination of water and wastewater - Twenty Third Edition. American Public Health Association (APHA), 23, 1-1546.
Asma, R., Alam, Md. J., Rahimgir, M., Asaduzzaman, M., Islam, A. M., Uddin, N., Khan, Md. S. I., Jahan, N.-W.-B., Siddika, S. S., & Datta, S. (2019). Prevalence of Multidrug-Resistant, Extensively Drug-Resistantand Pandrug-Resistant Uropathogens Isolated From UrinaryTract Infection Cases in Dhaka, Bangladesh. Avicenna J Clin Microbiol Infect, 6(2), 44–48. https://doi.org/10.34172/ajcmi.2019.09
Bailão, E. F. L. Cardoso., Zago, L. M. Sousa., Silva, N. C., Machado, K. B., D’Abadia, P. L., Oliveira, P. H. F., Nabout, J. C., & Almeida, L. M. (2020). Urban occupation increases water toxicity of an important river in central Brazil. J Soc Technol Environ Sci - Fronteiras, 9(1), 73–86. https://doi.org/10.21664/2238-8869.2020v9i1.p73-86
Brandão, C. Jesus., Botelho, M. J. Coelho., Sato, M. I. Zanoli., & Lamparelli, M. C. (2011). Guia Nacional De coleta e Preservação De amostras: Água, Sedimento, Comunidades Aquáticas E Efluentes Líquidos. Companhia Ambiental Do Estado de São Paulo (CETESB), 2, 326. Accessed 14 Jul 2021.
Brito, C. B. S., Correia, K. G., Bezerra, J. L., Sousa, J. C., Andrade, S. M., Cunha, M. A., Taminato, R. L., & Oliveira, E. H. (2020). O uso de antibióticos e sua relação com as bactérias multirresistentes em hospitais. Research, Society and Development, 9(11), 1–12. https://doi.org/10.33448/rsd-v9i11.9852
Carvalho, J. J. V. de, Boaventura, F. G., Silva, A. de C. R. da, Ximenes, R. L., Rodrigues, L. K. C., Nunes, D. A. de A., & Souza, V. K. G. de. (2021). Bactérias multirresistentes e seus impactos na saúde pública: Uma responsabilidade social. Research, Society and Development, 10(6), 1–11. https://doi.org/10.33448/rsd-v10i6.16303
Chaoui, L., Mhand, R., Mellouki, F., & Rhallabi, N. (2019). Contamination of the Surfaces of a Health Care Environment by Multidrug-Resistant (MDR) Bacteria. Inter J Microbiol, 2019. https://doi.org/10.1155/2019/3236526
Chen, Z., Yu, D., He, S., Ye, H., Zhang, L., Wen, Y., Zhang, W., Shu, L., & Chen, S. (2017). Prevalence of Antibiotic-Resistant Escherichia coli in Drinking Water Sources in Hangzhou City. Front Microbiol, 0(JUN), 1133. https://doi.org/10.3389/fmicb.2017.01133
CLSI. (2019). Performance Standards for Antimicrobial Susceptibility Testing, 29th Edition. In Clinical Laboratory Standards Institute (CLSI) (pp. 1–320).
Coelho, F. R., Rubin, J. C. R., & Silva, A. M. T. C. (2021). Análise de Qualidade da Água no Alto Curso do Rio Meia Ponte Entre 2013 e 2018. Revista EVS - Revista de Ciências Ambientais e Saúde, 47(1), 1–9.
Dang, B., Mao, D., Xu, Y., & Luo, Y. (2017). Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes. Water Res, 111, 81–91. https://doi.org/10.1016/j.watres.2016.12.046
Ekwanzala, M. D., Abia, A. L. K., Ubomba-Jaswa, E., Keshri, J., & Momba, N. B. M. (2017). Genetic relatedness of faecal coliforms and enterococci bacteria isolated from water and sediments of the Apies River, Gauteng, South Africa. AMB Express, 7(1), 20. https://doi.org/10.1186/s13568-016-0319-4
El-Din, H. T. Nour., Yassin, A. S., Ragab, Y. M., & Hashem, A. M. (2021). Phenotype-Genotype Characterization and Antibiotic-Resistance Correlations Among Colonizing and Infectious Methicillin-Resistant Staphylococcus aureus Recovered from Intensive Care Units. Infection and Drug Resistance, 14, 1557–1571. https://doi.org/10.2147/IDR.S296000
Gogoi, A., Mazumder, P., Tyagi, V. K., Chaminda, T. G. G., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169–180. https://doi.org/10.1016/J.GSD.2017.12.009
Gomes, R. Pereira., Rodrigues, A. Alves., Pincerati, M. Regina., Barbosa, M. Santiago., Braga, C. A. S. Bitencourt., Gonçalves, J. D. Vieira., & Carneiro, L. Carla. (2017). Assessment of the Bacteriological Quality of the Raw Water and the Antimicrobial Susceptibility Profile of Bacteria Isolated in Water Surface of a River. Inter J Microbiol Res, 9(9), 949–953.
Jardine, J., Mavumengwana, V., & Ubomba-Jaswa, E. (2019). Antibiotic resistance and heavy metal tolerance in cultured bacteria from hot springs as indicators of environmental intrinsic resistance and tolerance levels. Envir Pollut (Barking, Essex : 1987), 249, 696–702. https://doi.org/10.1016/j.envpol.2019.03.059
Karkman, A., Do, T. T., Walsh, F., & Virta, M. P. (2018). Antibiotic-Resistance Genes in Waste Water. Trends Microbiol, 26(3), 220–228. https://doi.org/10.1016/j.tim.2017.09.005
Kaur, R., Yadav, B., & Tyagi, R. D. (2020). Microbiology of hospital wastewater. Curr Dev Biotechnol and Bioengineering, 103–148. https://doi.org/10.1016/B978-0-12-819722-6.00004-3
Köche, J. C. (2016). Fundamentos de metodologia científica. Editora Vozes.
Maruzani, R., Pathak, A., Ward, M., Serafim, V., Munoz, L. P., Shah, A. J., & Marvasi, M. (2020). Antibiotic selective pressure in microcosms: Pollution influences the persistence of multidrug resistant Shigella flexneri 2a YSH6000 strain in polluted river water samples. Environ Technol Innov, 19. https://doi.org/10.1016/j.eti.2020.100821
Mohapatra, D. P., & Kirpalani, D. M. (2019). Advancement in treatment of wastewater: Fate of emerging contaminants. The Canadian J Chem Eng, 97(10), 2621–2631. https://doi.org/10.1002/cjce.23533
Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiol Spectr, 4(2), 464–472. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
OEHHA (Office of Environmental Health Hazard Assessment). (2020). Toxicity criteria on chemicals evaluated by OEHHA.https://oehha.ca.gov/chemicals. Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book].
Olivas, C. (2013). Trends In Antibiotic Resistance And Correlations Of Antibiotic Use And Antibiotic Resistance In A Small Hospital In El Paso, Texas 2013-2015. Open Access Theses & Dissertations. University of Texas at El Paso, 1-42. Acessed 24 Jul 2021.
Onuoha, S. C. (2017). Isolation and Characterization of Multi-drug Resistant Bacterial Species from Selected Water Sources in Izzi Area, Southeastern Nigeria. World Appl Sci J, 35(1), 27–32. https://doi.org/10.5829/idosi.wasj.2017.27.32
Palacios, O. A., Contreras, C. A., Muñoz-Castellanos, L. N., González-Rangel, M. O., Rubio-Arias, H., Palacios-Espinosa, A., & Nevárez-Moorillón, G. V. (2017). Monitoring of indicator and multidrug resistant bacteria in agricultural soils under different irrigation patterns. Agric Water Manag, 184, 19–27. https://doi.org/0.1016/j.agwat.2017.01.001
Pandey, P., Soupir, ML., Wang, Y., Cao, W., Biswas, S., Vaddella, V., Atwill, R., Merwade, V., & Pasternack, G. (2018). Water and Sediment Microbial Quality of Mountain and Agricultural Streams. J Environ Qual, 47(5), 985–996. https://doi.org/10.2134/jeq2017.12.0483
Rahmani, F., Hmaied, F., Matei, I., Chirila, F., Fit, N., Yahya, M., Jebri, S., Amairia, S., & Hamdi, M. (2020). Occurrence of Staphylococcus spp. and investigation of fecal and animal viral contaminations in livestock, river water, and sewage from Tunisia and Romania. Environ Monit Assess, 192(4), 1–12. https://doi.org/10.1007/s10661-020-8172-y
Ruiz-Aguirre, A., Polo-López, M. I. ;, Fernández-Ibáñez, P., & G., Z. (2017). Integration of Membrane Distillation with solar photo-Fenton for purification of water contaminated with Bacillus sp. and Clostridium sp. spores. Sci Total Environ, 595, 110–118. https://doi.org/10.1016/j.scitotenv.2017.03.238
Semedo-Lemsaddek, T., Pedroso, N. M., Freire, D., Nunes, T., Tavares, L., Verdade, L. M., & Oliveira, M. (2018). Otter fecal enterococci as general indicators of antimicrobial resistance dissemination in aquatic environments. Ecol Indicators, 85, 1113–1120. https://doi.org/10.1016/j.ecolind.2017.11.029
Shao, S., Hu, Y., Cheng, J., & Chen, Y. (2018). Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit Rev Biotechnol, 38(8), 1195–1208. https://doi.org/10.1080/07388551.2018.1471038
Sobisch, L.-Y., Rogowski, K. M., Fuchs, J., Schmieder, W., Vaishampayan, A., Oles, P., Novikova, N., & Grohmann, E. (2019). Biofilm Forming Antibiotic Resistant Gram-Positive Pathogens Isolated From Surfaces on the International Space Station. Front Microbiol, 10, 1–16. https://doi.org/10.3389/fmicb.2019.00543
StatSoft I. (2012). STATISTICA StatSoft I. (2012). Version 7. 2004. Tulsa, USA, 150. Acess 24 Jul 2021. https://www.scirp.org/(S(351jm bntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=410046
Wang, Q., Liu, L., Hou, Z., Wang, L., Ma, D., Yang, G., Guo, S., Luo, J., Qi, L., & Luo, Y. (2020). Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. Sci Total Environ, 717. https://doi.org/10.1016/j.scitotenv.2020.137055
WHO. (2017). Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. World Health Organization (WHO), 1–631.
Yusuf, U., Kotwal, S. K., Gupta, S., & Ahmed, T. (2018). Identification and antibiogram pattern of Bacillus cereus from the milk and milk products in and around Jammu region. Vet World, 11(2), 186–191. https://doi.org/10.14202/vetworld.2018.186-191
Zhang, Y., Feng, R., Li, L., Zhou, X., Li, Z., Jia, R., Song, X., Zou, Y., Yin, L., He, C., Liang, X., Zhou, W., Wei, Q., Du, Y., Yan, K., Wu, Z., & Yin, Z. (2018). The Antibacterial Mechanism of Terpinen-4-ol Against Streptococcus agalactiae. Curr Microbiol, 75(9), 1214–1220. https://doi.org/10.1007/s00284-018-1512-2
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Thais Reis Oliveira; Raylane Pereira Gomes ; Ariadne Bernardes Rodrigues ; Leandro Martins Ferreira ; Aline Rodrigues Gama ; José Daniel Gonçalves Vieira; Marcos Rassi Fernandes ; Lilian Carla Carneiro
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.