El haloperidol aumenta la lipoperoxidación en tejido hepático promocionada por una dieta alta en grasas en ratas
DOI:
https://doi.org/10.33448/rsd-v9i2.2153Palabras clave:
Haloperidol; Magnesio intracelular; Dieta alta en grasas; Estrés oxidativo; Peroxidación lipídica.Resumen
Este estudio tuvo como objetivo evaluar los efectos del tratamiento con haloperidol (HAL) asociado con una dieta alta en grasas (DAG) sobre el daño hepático y renal, los niveles de magnesio intracelular (Mg2+) y los niveles de grasa abdominal. Para esto, se trataron ratas Wistar macho jóvenes con DAG o con dieta de control durante 48 semanas. En la semana 24, parte de los animales comenzaron a ser tratados conjuntamente con HAL (1 mg/kg/día por vía intramuscular). Después de 4 semanas de administración de HAL, las ratas fueron sacrificadas y sus tejidos fueron retirados para análisis. Los resultados indicaron que una DAG aumentó significativamente la peroxidación lipídica en el tejido hepático en comparación con los animales tratados con dieta de control (P <0.05). Además, la asociación entre DAG y HAL aumentó la lipoperoxidación en el hígado de los animales (P <0.05). Por otro lado, DAG y/o HAL no promovieron cambios significativos en los niveles de lipoperoxidación renal. Encontramos una correlación negativa entre los niveles intracelulares de Mg2+ y el contenido de grasa abdominal en todos los animales. En conclusión, los datos mostrados indican interacciones adversas entre HAL y DAG en el hígado. Además, la correlación negativa entre los niveles intracelulares de Mg2 + y el contenido de grasa abdominal indica una posible participación de Mg2 + en el desarrollo del síndrome metabólico asociado con una DAG.
Citas
Andreazza, A.C., Barakauskas, V.E., Fazeli, S., Feresten, A., Shao, L., Wei, V., Wu, C.H., Barr, A.M., & Beasley, C.L. (2015). Effects of haloperidol and clozapine administration on oxidative stress in rat brain, liver and serum. Neuroscience Letters, 591:36-40. doi: 10.1016/j.neulet.2015.02.028. Epub 2015 Feb 13.
Axen, K.V., Dikeakos, A., & Sclafani, A. (2003). High dietary fat promotes syndrome X in non obese rats. The Journal of Nutrition, 133: 2244-2249.
Bisschop, P.H., de Metz, J., Ackermans, M.T., Endert, E., Pijl, H., Kuipers, F., Meijer, A.J., Sauerwein, H.P., & Romijn, J.A. (2001). Dietary fat content alters insulin-mediated glucose metabolism in healthy men. The American Journal of Clinical Nutrition, 73: 554-559.
Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 27: 248-254.
Chen, Y. (2003). High fat diet induces severe hepatic fibrosis in inducible nitric oxide gene-knockout mice. Hepatology, 36: 1-336.
Choi, J.Y., Jang, E., Park, C., & Kang, J. (2005). Enhanced susceptibility to 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity in high-fat diet-induced obesity. Free Radical Biology and Medicine, 38: 806-816.
Cope, M.B., Nagy, T.R., Fernández, J.R., Geary, N., Casey, D.E., & Allison, D.B. (2005). Antipsychotic drug-induced weight gain: development of an animal model. International Journal of Obesity, 29: 607-614.
Dalla Corte, C.L., Fachinetto, R., Colle, D., Pereira, R.P., Ávila, D.S., Villarinho, J.G., Wagner, C., Pereira, M.E., Nogueira, C.W., Soares, F.A.A., & Rocha, J.B.T. (2008). Potentially adverse interactions between haloperidol and valerian. Food and Chemical Toxicology, 46: 2369–2375.
Fachinetto, R., Burger, M.E., Wagner, C., Wondracel, D.C., Brito, V.B., Nogueira, C.W., Ferreira, J., & Rocha, J.B.T. (2005). High fat increases the incidence of orofacial dyskinesia and oxidative stress in specific brain regions of rats. Pharmacology Biochemistry and Behavior, 81: 585-592.
Folmer, V., Soares, J.C.M., & Rocha, J.B.T. (2002). Oxidative stress in mice is dependent on the free glucose content of the diet. The International Journal of Biochemistry & Cell Biology, 34: 1279-85.
Folmer, V., Soares, J.C.M., Gabriel, D., & Rocha, J.B.T. (2003). A high fat-diet inhibits delta aminolevulinate dehydratase and increases lipid peroxidation in mice (Mus musculus). The Journal of Nutrition, 133: 2165-2170.
Ford, E.S., & Mokdad, A.H. (2003). Dietary Magnesium Intake in a National Sample of US adults. The Journal of Nutrition, 133: 2879-82.
Forsman, G., Folsch, M., Larsson, M., & Ohman, R. (1977). The metabolism of haloperidol in man. Current Therapeutic Research, Clinical and Experimental, 21: 606-617.
Freedman, A.M., Mak, I.T., Stafford, R.E., Dickens, B.F., Cassidy, M.M., Muesing, R.A., & Weglicki, W.B. (1999). Erythrocytes from magnesium-deficient hamsters display an enhanced susceptibility to oxidative stress. American Journal of Physiology, 262: C1371-C1375.
Gonzalez, F.J. (2005). Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutation Research, 569: 101-110.
Greenwood, C.E., & Winocur, G. (2005). High fat diet, insulin resistance and declining cognitive function. Neurobiology of Aging, 265: 542-545.
Halliwell, B. (1982). Superoxide-dependent formation of hidroxil radicals in the presence of iron salts is a feasible source of hidroxil radicals in vivo. Biochemical Journal, 205: 462-472.
Halliwell, B., & Gutteridge, J.M.C. (1986). Oxygen free radical and iron relation to biology and medicine: some problem and concepts. Archives of Biochemistry and Biophysics, 246: 501-514.
Hashimoto, T. (1996). Peroxisomal ß-oxidation: enzymology and molecular biology. Annals of the New York Academy of Sciences, 804: 86-98.
Ige, A.O., Adewoye, E.O., & Makinde. E.O. (2016). Oral Magnesium Potentiates Glutathione Activity in Experimental Diabetic Rats. International Journal of Diabetes Research, 5(2): 21-25. doi: 10.5923/j.diabetes.20160502.01
Lin, E.J., Lee, N.J., Slack, K., Karl, T., Duffy, L., O'brien, E., Matsumoto, I., Dedova, I., Herzog, H., & Sainsbury, A. (2006). Distinct endocrine effects of chronic haloperidol or risperidone administration in male rats. Neuropharmacology, 51: 1129-36.
Lopez-Ridaura, R., Willett, W.C., Rimm, E.B., Liu, S., Stampfer, M.J., Manson, J.E., & Hu, F.B. (2004). Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care, 27: 134-140.
Mondelli, V., Anacker, C., Vernon, A.C., Cattaneo, A., Natesan, S., Modo, M., Dazzan, P., Kapur, S. & Pariante, C.M. (2013). Haloperidol and olanzapine mediate metabolic abnormalities through different molecular pathways. Translational psychiatry, 3(1), e208. doi:10.1038/tp.2012.138
Moram, M.R., & Romero, F.G. (2003). Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetes subjects. Diabetes Care, 26: 1147-1152.
Morgan, K., Mao, L., French, S., & Morgan, T.R. (2003). Fatty liver histologic features of non-alcoholic steatohepatitis (NASH) develop in male mice fed a nutritionally complete high fat diet. Hepatology, 38; 1-501.
Nadler, J.L. (2004). A new dietary approach to reduce the risk of type 2 diabetes? Diabetes Care, 27: 270-271.
Nechifor, M. (2008). Interactions between magnesium and psychotropic drugs. Magnesium Research, 21: 97-100.
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95: 351-358.
Paiva Sousa, M., Cruz, K.J.C., Melo, S.R.S., Araújo, D.S.C, Soares, T.C., & Marreiro, D.N. (2020). Influência do Magnésio e Cálcio sobre o Estresse Oxidativo na Obesidade. Research, Society and Development, v.9, n.1, e124911776. doi: http://dx.doi.org/10.33448/rsd-v9i1.1776
Paolisso, G., & Barbagallo, M. (1997). Hypertension, diabetes mellitus and insulin resistance: the role of intracellular magnesium. American Journal of Hypertension, 10: 346-355.
Polydoro, M., Schröder, N., Lima, M.N.M., Caldana, F., Laranja, D.C., Bromberg, E., Roesler, R., Quevedo, J., Moreira, J.C.F., & Dal-Pizzol, F. (2004). Haloperidol-and clozapine-induced oxidative stress in the rat brain. Pharmacology Biochemistry and Behavior, 78: 751-756.
Pryor, W.A., & Squadrito, G.L. (1995). The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. The American Journal of Physiology-Lung Cellular and Molecular Physiology, 268: L699-L722.
Rayssiguier, Y., Gueux, E., Bussière, L., Durlach, J., & Mazur, A. (1993). Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. Journal of the American College of Nutrition, 12: 133-137.
Reinke, A., Martins, M.R., Lima, M.S., Moreira, J.C., Dal-Pizzol, F., & Quevedo, J. (2004). Haloperidol and clozapine, but not olanzepine, induces oxidative stress in rat brain. Neuroscience Letters, 372: 157-160.
Ronis, M.J., Korourian, S., Zipperman, M., Hakkak, R., & Badger, T.M. (2004). Dietary Saturated Fat Reduces Alcoholic Hepatotoxicity in Rats by Altering Fatty Acid Metabolism and Membrane Composition. Journal of Nutrition, 134: 904-912.
Saiki, R., Okazaki, M., Iwai, S., Kumai, T., Kobayashi, S., & Oguchi, K. (2007). Effects of pioglitazone on increases in visceral fat accumulation and oxidative stress in spontaneously hypertensive hyperlipidemic rats fed a high-fat diet and sucrose solution. Journal of Pharmaceutical Sciences, 105: 157-167.
Salgueiro, A.C.F., Folmer, V., Silva, M.P., Mendez, A.S.L., Zemolin, A.P.P., Posser, T., Franco, J.L., Puntel, R.L., & Puntel, G.O. (2016). Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice. Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 8902954, 9 pages. doi: https://doi.org/10.1155/2016/8902954.
Sastre, J., Pallardó, F.V., & Viña, J. (2003). The role of mitochondrial oxidative stress in aging. Free Radical Biology and Medicine, 35: 1-8.
Sharma, R.K., Lake, B.G., Makowsky, R., Bradshaw, T., Earnshaw, D., Dale, J.W., & Gibson, G.G. (1989). Differential induction of peroxisomal and microsomal fatty-acid-oxidizing enzymes by peroxisome proliferators in rat liver and kidney. European Journal of Biochemistry, 189: 69-78.
Soudijn, W., Van Wijngaarden, I., & Allewijn, F. (1967). Distribution, excretion and metabolism of neuroleptics of the butyrophenone type: part I. Excretion and metabolism of haloperidol and nine related butyrophenone-derivatives in the Wistar rat. European Journal of Pharmacology, 1: 47-57.
Su, G.M., Fiala-Beer, E., Weber, J., Jahn, D., Robertson, G.R., & Murray, M. (2005). Pretranslational upregulation of microsomal CYP4A in rat liver by intake of a high-sucrose, lipid-devoid diet containing orotic acid. Biochemical Pharmacology, 69: 709-717.
Telles-Correia, D., Barbosa, A., Cortez-Pinto, H., Campos, C., Rocha, N. B., & Machado, S. (2017). Psychotropic drugs and liver disease: A critical review of pharmacokinetics and liver toxicity. World journal of gastrointestinal pharmacology and therapeutics, 8(1), 26–38. doi:10.4292/wjgpt.v8.i1.26
Visgueira de Sousa, T.G., Oliveira, A.R.S., Cruz, K.J.C., Araújo, D.S.C., Sousa, M.P., Melo, S.R.S., Silva, V.C., Sousa, G.S., & Marreiro, D.N. (2020). Ingestão dietética de magnésio e ferro e sua relação com estresse oxidativo em mulheres obesas. Research, Society and Development, v.9, n.1, e160911732. doi: http://dx.doi.org/10.33448/rsd-v9i1.1732
Vormann, J. (2003). Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 24: 27-37.
Wan, G., Ohnomi, S., & Kato, N. (2000). Increased hepatic activity of inducible nitric oxide synthase in rats fed on a high-fat diet. Bioscience, Biotechnology, and Biochemistry, 64: 555-561.
Wright, A.M., Bempong, J., Kirby, M.L., Barlow, R.L., & Bloomquist, J.R. (1998). Effects of haloperidol metabolites on neurotransmitter uptake and release: possible role in neurotoxicity and tardive dyskinesia. Brain Research, 788: 215-222.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.