Efeito Efecto del contacto con la sangre y la solución salina sobre el cambio de volumen y la solubilidad de MTA HP Repair®, Bio-C Repair®, MTA Flow® y Bio-C Repair ION + ®
DOI:
https://doi.org/10.33448/rsd-v10i15.22143Palabras clave:
Silicato de cálcio; Solubilidade; Endodoncia quirúrgica; Tomografía micro-computarizada; Propiedades fisicoquímicas.Resumen
El objetivo de este estudio fue evaluar el efecto del contacto con sangre y solución salina sobre el cambio en el volumen y la solubilidad de los cementos de silicato de calcio MTA HP Repair®, Bio-C Repair®, MTA Flow® y Bio-C Repair ION+®. Después de insertar los materiales en cavidades retrógradas, fueron explorados usando una microtomografía 1174 (T0) y después colocados en contacto con sangre y salino. Después de 07 días de contacto, las muestras fueron escaneadas de nuevo (T01), y el cambio de volumen fue analizado. Los datos fueron sometidos a análisis estadístico mediante las pruebas de Wilcoxon, MAN WHITNEY y KRUSKAL-WALLIS (p<0,05). El contacto de solución salina con cemento Bio-C Repair ION+ aumentó su volumen. La sangre produjo un aumento en la solubilidad de MTA HP y MTA Flow. Los cementos Bio-C Repair y Bio-C Repair ION+ no cambiaron volumen cuando esron en contacto con la sangre. Los valores de menor variación de volumen ocurrieron en los cementos Bio-C Repair y Bio-C Repair ION+ cuando entraron en contacto con la sangre.
Citas
Akinci L., Simsek N., & Aydinbelge H. A. (2020). Physical properties of MTA, BioAggegate and Biodentine in simulated conditions: A micro-CT analysis. Dental materials journal, 1-7.
Belobrov I. & Parashos P. (2011). Treatment of tooth discoloration after the use of white mineral trioxide aggregate. Journal of endodontics., 37 (7), 1017-1020.
Camilleri J. (2008). Characterization of hydration products of mineral trioxide aggregate. International endodontic journal, 41, 408–417.
Camilleri J. (2017). Will bioceramics be the Future Root Canal Filling Materials? Dental restorative materials, Curr oral health rep.
Camilleri J. (2020). Classification of hydraulic cements used in dentistry. Frontiers in dental medicine, 1, (9), 1-6.
Candeiro G. T., Moura-Netto C., D’Almeida-Couto R. S., Azambuja-Junior, N., Marques M. M., Cai S., & Gavini G. (2016) Cytotoxity, genotoxicity and antibacterial effectiviness of bioceramic endodontic sealer. International endodontic journal, 49, 858-864.
Canali L. C. F., Morais C. A. H., Cavenago B. C., Vivan R. R., & Duarte M. A. H. (2016). Influência do contato com sangue e soro fisiológico na solubilidade, pH e constituição química do MTA. Dental press endodontics, 6, (3), 41- 45.
Cavenago B. C., Pereira T. C., Duarte M. A. H., Ordinola-Zapata R., Marciano M. A., Bramante C. M., & Bernardineli N. (2014). Influence of powder-to-water ratio on radiopacity, setting time, pH, calcium release and micro-CT volumetric solubility of white mineral trioxide aggregate. International endodontic journal, 47, 120-126.
Cavenago B. C., Carpio-Perochena A. E. D., Ordinola-Zapata R., Estela C., Garlet G. P., Tanomaru-Filho M., Weckwerth P. H., Andrade F. B., & Duarte M. A. H. (2017). Effect of using different vehicles on the physicochemical, antimicrobial, and biological properties of mineral trioxide aggregate. Journal of endodontics, 43, 779-786.
Cintra, L. T. A., Benetti F., Queiroz I. O. A., Lopes J. M. A., Oliveira S. H. P., Araújo G. S., & Gomes-Filho J. E. (2017). Cytotoxicity, biocompatibility, and biomineralization of the new high-plasticity MTA material. Journal of endodontics, 43, 774-778.
Hungaro Duarte M. A., Minotti P. G., Rodrigues C. T. et al. (2012). Effect of different radiopacifying agents on the physicochemical properties of white Portland cement and white mineral trioxide aggregate. Journal of endodontics, 38, (3), 394-397.
Fridland M. & Rosado R. (2003). Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. Journal of endodontics, 29, 814–817.
Guimarães B. M., Prati C., Duarte M. A. H., Bramante C. M., & Gandolfi M. G. (2018). Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. Jaos, 26, 1-8.
Holland R., de Souza V., Nery M. J. et al. (2002). Calcium salts deposition in rat connective tissue after the implantation of calcium hydroxide-containing sealers. Journal of endodontics, 28,173-176.
International Organization for Standardization (2001). Dental root canal sealing materials, ISO 6786.
Koh E. T. et al. (1997). Mineral trioxide aggregate stimulates a biological response in human osteoblasts. Journal of biomed materials research, 37, (3), 432-439.
Kohli M. R., Yamaguchi M., Setzer F. C., & Karabucak B. (2015). Spectrophotometric analysis of coronal tooth discolorations induced by various bioceramic cements e other endodontic material. Journal of endodontics, 41, 1862-1866, 2015.
Loushine, B. A., Bryan T. E., & Looney S. W. (2011). Setting properties and cytotoxicity evaluation of premixed bioceramic root canal sealer. Journal of endodontics, 37, 673-677.
Marciano M. A., Camillieri J., Costa R. M., Matsumoto M. A., Guimarães B. M., & Duarte M. A. H. (2017). Zinc oxide inhibits dental discoloration caused by white mineral aggregate angelus. Journal of endodontics, 43, 1001-1007.
Morais C. A. H. et al. Evaluation of tissue response to MTA and Portland cement with iodoform. (2006). Oral surgery oral medicine oral pathology oral radiology endodontics, 102, 417-421.
Nekoofar M. H., Aseeley Z., & Dummer P. M. (2010). The effect of various mixing techniques on the surface microhardness of mineral trioxide aggregate. International endodontic journal, 43, 312–320.
Nekoofar M. H., Oloomi K., Sheykhrezae M. S., Tabor R., Stone D. F., & Dummer P. M. H. (2010). An evaluation of the effect of blood and human serum on the surface microhardness and surface microstructure of mineral trioxide aggregate. International endodontic journal, 43, 849-858.
Orstavik D. (2014). Endodontic filling materials. Endodontic topics. 31, 53–67.
Parirokh M. & Torabinejad M. (2010). Mineral trioxide aggregate: a comprehensive literature review–Part I: chemical, physical, and antibacterial properties. Journal of endodontics, 36, 16–27.
Siboni F., Taddei P., Zamparini F., Prati C., & Gandolfi M. G. (2017). Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. International endodontic journal, 50, 120 –136.
Silva E. J. N. L., Carvalho N. K., Guberman M. R. C., Pardo M., Senna P. M., Souza E. M., & De-Deus G. (2017). Push out bond strength of fast-setting mineral trioxide aggregate and pozzolan-based cements: Endocem MTA and Endocem Zr. Journal of endodontics, 43, 801-804.
Sisli S. N. & Ozbas H. (2017). Comparative micro-computed tomographic evaluation of the sealing quality of Pro Root MTA and MTA Angelus apical plugs placed with various techniques. Journal of endodontics, 43, 147-151.
Slattery C. & Beaumont D. (1989). Sheep platelets as a model for human platelets: Evidence for specific PAF (Platelet Activating Factor) receptors. Thrombosis research, 55,569-576.
Torabinejad M., Hong C. U., McDonald F., & Pitt Ford T. R. (1995). Physical and chemical properties of a new root-end filling material. Journal of endodontics, 21, 349–353.
Torabinejad M., Hong C. U., Pitt Ford T. R., & Kaiyawasam S. P. (1995). Tissue reaction to implanted super-EBA and mineral trioxide aggregate in the mandible of guinea pigs: a preliminary report. Journal of endodontics, 21, 569–571.
Torabinejad M., Pitt Ford T. R., McKendry D. J., Abedi H. R., Miller D. A., & Kariyawasam S. P. (1997). Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. Journal of endodontics, 23, 225–228.
Torabinejad M. & Chivian N. (1999). Clinical applications of mineral trioxide aggregate. Journal of endodontics, 25, (3),197-205.
Torabinejad M et al. (1995). Investigation of mineral trioxide aggregate for root-end filling in dogs. Journal of endodontics, 21, (12), 603-607.
Wu M. K. et al. (1995). A 1-year follow-up study on leakage of four root canal sealers at different thicknesses. International endodontics journal., 28,185-189.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Carlos Alberto Herrero de Morais; Lyz Cristina Furquim Canali; Jussaro Alves Duque; Murilo Priori Alcalde; Rodrigo Ricci Vivan; Marco Antonio Hungaro Duarte
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.