Potencial biológico y microencapsulación del aceite esencial de Cinnamomum cassia como alternativa para el control de plagas en maíz almacenado
DOI:
https://doi.org/10.33448/rsd-v10i14.22334Palabras clave:
Cinnamomum cassia; Trans-cinamaldehído; Aceite esencial; Encapsulación; Bioinsecticida; Biofungicida.Resumen
Este estudio propone una revisión del potencial biológico del aceite esencial de canela (Cinnamomum cassia) con un enfoque en la microencapsulación como alternativa para controlar la ocurrencia de plagas en granos de maíz almacenados. Debido a las demandas sobre la productividad del maíz existe la necesidad de mejorar los procesos y condiciones de almacenamiento del grano, ya que en esta etapa existen pérdidas cuantitativas y/o cualitativas, principalmente por el gorgojo del maíz (Sitophilus zeamais) y la incidencia de micotoxinas productoras. hongos (Penicillium crustosum, Alternaria alternata y Aspergillus flavus). El control de estas plagas se suele realizar con insecticidas químicos, que pueden dejar residuos tóxicos en el grano. Por tanto, la microencapsulación de aceites esenciales aparece como una alternativa prometedora, considerando la volatilidad de los compuestos aromáticos, que son en gran parte responsables de la actividad contra las plagas.
Citas
Abbas, S.; Da Wei, C.; Hayat, K. & Xiaoming, Z. (2012). Ascorbic Acid: Microencapsulation Techniques and Trends-A Review. Food Rev. Int., 28, 343–374. https://doi.org/10.1080/87559129.2011.635390.
Andrade-Ochoa, S.; Nevárez-Moorillón, G. V.; Sánchez-Torres, L. E.; Villanueva-García, M.; Sánchez-Ramírez, B. E.; Rodríguez-Valdez, L. M. & Rivera-Chavira, B. E. (2015). Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement Altern. Med., 15, 332. https://doi.org/10.1186/s12906-015-0858-2.
Andrés, M. F.; González-Coloma, A.; Sanz, J.; Burillo, J. & Sainz, P. (2012). Nematicidal activity of essential oils: a review. Phytochem. Rev., 11, 371–390. https://doi.org/10.1007/s11101-012-9263-3.
Attokaran, M. (2017). Turmeric: Curcuma longa L (Zingiberaceae). Natural Food Flavors and Colorants. Ames: Backwell Publishing Ltd and Inst. Food Technol., 98, 391-39.
Azeredo, H. M. C. ((2005). Encapsulação: aplicação à tecnologia de alimentos. Alim. Nutr., 16, 89–97.
Bae, E. K. & Lee, S. J. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. J. Microencapsul., 25, 549–560. https://doi.org/10.1080/02652040802075682.
Bakkali, F.; Averbeck, S.; Averbeck, D. & Idaomar, M. (2008). Biological effects of essential oils – A review. Food Chem. Toxicol., 46, 446–475. https://doi.org/10.1016/j.fct.2007.09.106.
Barbosa, R. F. S.; Yudice, E. D. C.; Mitra, S. K. & Rosa, D. S. (2021). Characterization of Rosewood and Cinnamon cassia essential oil polymeric capsules: Stability, loading efficiency, release rate and antimicrobial properties. Food Control, 121, 107605. https://doi.org/10.1016/j.foodcont.2020.107605.
Barreto, A. R.; Ramírez-Mérida, L. G.; Etchepare, M. de A.; Jacob-Lope, E. & Menezes, C. R. (2015). Materiais de revestimento utilizados na microencapsulação de probióticos. Ciência e Natura, 37, 164-174. https://doi.org/10.5902/2179-460X19747.
Benelli, G. (2015). Research in mosquito control: current challenges for a brighter future. Parasitol. Res., 114, 2801–2805. https://doi.org/10.1007/s00436-015-4586-9.
Bennett, J. W. & Klich, M. (2003). Mycotoxins. J. Clin. Microbiol., 16(3), 497-516. http://dx.doi.org/10.1128/cmr.16.3.497-516.2003.
Betancur, J. R.; Silva, G. A.; Rodríguez, C. J. M.; Fischer, S. G. & Zapata, N. S. M. (2010). Insecticidal Activity of Peumus boldus Molina Essential Oil against Sitophilus zeamais Motschulsky. Chil. J. Agric. Res., 70, 399–407.
Böger, B. R.; Georgetti, S. R. & Kurozawa, L. E. (2018). Microencapsulation of grape seed oil by spray drying. Food Sci. Technol., 38, 263–270.
Boyer, S.; Zhang, H. & Lempérière, G. (2012). A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res., 102, 213–22. https://doi.org/10.1017/S0007485311000654.
Brasileiro, J. S. L. (2011). Microencapsulação de compostos bioactivos: inovação em diferentes áreas. Dissertação. Mestrado Integrado em Ciências Farmacêuticas. Universidade Fernando Pessoa. http://hdl.handle.net/10284/2457.
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol., 94, 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.
Calo, J. R.; Crandall, P. G.; O’bryan, C. A. & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems– A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040.
Cansian, R. L.; Vanin, A. B.; Orlando, T.; Piazza, S. P.; Puton, B. M. S.; Cardoso, R. I.; Gonçalves, I. L.; Honaiser, T. C.; Paroul, N. & Oliveira, D. (2017). Toxicity of clove essential oil and its ester eugenyl acetate against Artemia salina. Braz. J. Biol, 77, 155-161. https://doi.org/10.1590/1519-6984.12215
Cansian, R. L.; Astolfi, V.; Cardoso, R. I.; Paroul, N.; Roman, S. S.; Mielniczki-Pereira, A. A.; Pauletti, G. F. & Mossi, A. J. (2015). Insecticidal and repellent activity of the essential oil of Cinnamomum camphora var. linaloolifera Y. Fujita (Ho-Sho) and Cinnamomum camphora (L.) J Presl. var. hosyo (Hon-Sho) on Sitophilus zeamais Mots. (Coleoptera, Curculionedae). Rev Bras Pl Med., 17, 769-773.
Casida, J. E. & Durkin, K. A. (2013). Anticholinesterase insecticide retrospective. Chem. Biol. Interact., 203, 221–225. https://doi.org/10.1016/j.cbi.2012.08.002.
Chew, S.-C.; Tan, C.-P.; Tan, C.-H. & Nyam, K.-L. (2020). In-vitro bioaccessibility of spray dried refined kenaf (Hibiscus cannabinus) seed oil applied in coffee drink. J. Food Sci. Technol., 7, 2507–2515. https://doi.org/10.1007/s13197-020-04286-9.
Chiozza, L. (1856). Sur la production artificielle de l´essence de cannelle"[on the artificial production of cinnamon oil]. Omptes rendus [in French], 222–227.
Chu, S. S., Du, S. S. & Liu, Z. L. (2013). Fumigant compounds from the essential oil of Chinese Blumea balsamifera leaves against the maize weevils (Sitophilus zeamais). J. Chem., 2013, 289874. https://doi.org/10.1155/2013/289874.
Conab. (2021). Levantamento Sistemático da Produção Agrícola - LSPA. <https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9201-levantamento-sistematico-da-producao-agricola.html?=&t=resultados>
Constant, P. B. L. & Stringheta, P. C. (2002). Microencapsulação de ingredientes alimentícios. Sociedade Brasileira de Ciência e Tecnologia de Alimentos, 36, 12–18.
Corrêa, J. C. R. & Salgado, H. R. N. (2011). Atividade inseticida das plantas e aplicações: revisão. Rev. Bras. de Plantas Medicinais, 13, 500–506. https://doi.org/10.1590/S1516-05722011000400016.
Cosimi, S.; Rossi, E.; Cioni, P. L. & Canale, A. (2009). Bioactivity and qualitative analysis of some essential oils from Mediterranean plants against stored-product pests: Evaluation of repellency against Sitophilus zeamais Motschulsky, Cryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.). J. Stored Prod. Res., 45, 125–132. https://doi.org/10.1016/j.jspr.2008.10.002.
Costa, A.F. (2002). Farmacognosia. Lisboa, Fundação Calouste Gulbenkian. 6ed. v. 3, p. 1-37.
Costa, J. M. G.; Borges, S. V.; Hijo, A. A. C. T.; Silva, E. K.; Marques, G. R.; Cirillo, M. Â. & Azevedo, V. M. (2013). Matrix structure selection in the microparticles of essential oil oregano produced by spray dryer. J Microencapsul, 30, 717–727. https://doi.org/10.3109/02652048.2013.778909.
Costa, M. L. N.; Gonçalves, D. S. F. & Machado, J. C. (2020). Controle de Fusarium verticillioides em sementes de milho com o óleo essencial de gengibre. Summa Phytopathol., 46, 250–254. https://doi.org/10.1590/0100-5405/233888.
Desai, K. G. H. & Park, H. J. (2005). Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. J. Microencapsul, 22, 179–192. https://doi.org/10.1080/02652040400026533.
Devi, N.; Sarmah, M.; Khatun, B. & Maji, T. K. (2017). Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Adv. Colloid Interface Sci., 239, 136–145. https://doi.org/10.1080/02652040400026533.
Doebley, J. (1990). Molecular evidence for gene flow among Zea species. Biosci, 40, 443–448. https://doi.org/10.2307/1311391.
Drusch, S. & Mannino, S. (2009). Patent-based review on industrial approaches for the microencapsulation of oils rich in polyunsaturated fatty acids. Trends Food Sci Technol, 20, 237–244. https://doi.org/10.1016/j.tifs.2009.03.007.
Duarte, J. O.; Mattoso, M. J. & Garcia, J. C. (2010) Economia da produção. https://www.agencia.cnptia.embrapa.br/gestor/milho/arvore/CONTAG01_8_168200511157.html, accessed on: 01/03/2020.
Duguta, M. T. & Cheryan, D. B. (2021). An Introduction and Various Phytochemical Studies of Cinnamomum malabatrum: A Brief Review. Pharmacogn. J., 13, 792-797. https://doi.org/10.5530/pj.2021.13.101.
Dumas, J. & Peligot, H. (1834). Sur l’Huile de Cannelle, l’Acide Hippurique, e l’Acide Sébacique. Annales de chimie et de physique, 57, 305–334.
Fancelli, A. L. (2015). Manejo baseado na fenologia aumenta a eficiência de insumos e produtividade. Cadeia produtiva do milho. Revista Visão Agrícola. Escola Superior de Agricultura Luiz de Queiroz. Ano 9, p. 25.
Faroni, L. R. A.; Heleno, F. F. & Ávila, M. B. R. (2014). Resíduos de Pesticidas em Grãos no Brasil. In: Pós-Colheita de Grãos: Logística e Segurança Alimentar do Produtor ao Consumidor. 1 ed. Londrina: ABRAPOS, v.6, p. 44-52.
Fassio, D. M. R.; Souza, A. B. M.; Medeiros, S. T. & Thomé, R. P. (2018). Otimização da infraestrutura logística na mitigação de perdas na pós-colheita de grãos. In: Perdas e desperdício de alimentos: estratégias para redução. Brasília, DF: Câmara dos Deputados, 1, 115-131.
Fávaro-Trindade, C. S.; Pinho, S. C. & Rocha, G. A. (2008). Revisão: microencapsulação de ingredientes alimentícios (2008). Brazilian J. Food Technol., 11, 103–112.
Felix, P. H. C. (2014). Microencapsulação de óleo essencial de canela por atomização com emprego de diferentes materiais de parede. Universidade Federal de Minas Gerais. http://hdl.handle.net/1843/BUBD-9WRJ69.
Fernandes, R.; Carmo, E.; Borges, S.; Botrel, D.; Silva, Y. & Souza, H. (2017). Comportamento de óleo essencial de alecrim microencapsulado por spray drying em diferentes umidades relativas. Revista Ciência Agrícola, 14, 73. https://doi.org/10.28998/rca.v14i1.2469.
Friedman, M.; Kozuke, N. & Harden, L. A. (2000). Cinnamaldehyde content in foods determined by gas chromatography-mass spectrometry. J. Agric. Food Chem., 48, 5702–5709. https://doi.org/10.1021/jf000585g.
Gallo, D.; Nakano, O.; Silveira Neto, S.; Carvalho, R. P. L.; Batista, G. C.; Berti Filho, E.; Parra, J. R. P.; Zucchi, R. A.; Alves, S. B.; Vendramin, J. D.; Marchini, L. C.; Lopes, J. R. S. & Omoto, C. (2002). Entomologia agrícola. Piracicaba: FEALQ, p. 920.
Gill, A. O. & Holley, R. A. (2004). Mechanisms of Bactericidal Action of Cinnamaldehyde against Listeria monocytogenes and of Eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol., 70, 5750–5755. https://doi.org/10.1128/AEM.70.10.5750-5755.2004.
Gonçalves, V. D. M.; Huerta, M. & Freitag, R. A. (2016). Potencial de plantas acaricidas no controle de carrapatos Rhipicephalus (Boophilus) microplus. Rev. Ciên. Vet. Saúde Públ, 3, 14. https://doi.org/10.4025/revcivet.v3i1.29096.
Goneli, A. L. D. (2021). Novas tecnologias aplicadas à pós-colheita para mitigação de perdas qualitativas e quantitativas. In: Perdas em transporte e armazenagem de grãos: panorama atual e perspectivas. Brasília, DF: Conab, p. 75-86.
Hamzah, H.; Indra Yudhawan, I.; Nur Rasdianah, N.; Setyowati, E.; Erika Nandini, E. & Pratiwi, S. U. T. (2022). Clove Oil Has the Activity to Inhibit Middle, Maturation and Degradation Phase of Candida tropicalis Biofilm Formation. Biointerface Res Appl. Chem, 12(2), 1507-1519. https://doi.org/10.33263/BRIAC122.15071519
Hernandez Nopsa, J. F.; Daglish, G. J.; Hagstrum, D. W.; Leslie, J. F.; Phillips, T. W.; Scoglio, C.; Thomas-Sharma, S.; Walter, G. H. & Garrett, K. A. (2015). Ecological Networks in Stored Grain: Key Postharvest Nodes for Emerging Pests, Pathogens, and Mycotoxins. Biosci, 65, 985–1002. https://doi.org/10.1093/biosci/biv122.
Hu, Q.; Li, X.; Chen, F.; Wan, R.; Yu, C.; Li, J. & Deng, Z. (2020). Microencapsulation of an Essential Oil (Cinnamon Oil) by Spray Drying: Effects of Wall Materials and Storage Conditions on Microcapsule Properties. J. Food Process. Pres., 44, 14805-14816. https://doi.org/10.1111/jfpp.14805.
Huang, Y.; Tan, J. M. W. L.; Kini, R. M. & Ho, S. H. (1997). Toxic and antifeedant action of nutmeg oil against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. J. Stored Prod. Res., 33, 289–298. https://doi.org/10.1016/S0022-474X(97)00009-X.
Huertas, R. A. P. (2010). Revisión: Microencapsulación de Alimentos. Rev. Fac. Nac. Agron. Medellin., 63, 5669–5684.
Isman, M. B. & Grieneisen, M. L. (2014). Botanical insecticide research: many publications, limited useful data. Trends Plant Sci., 19, 140–145. https://doi.org/10.1016/j.tplants.2013.11.005.
Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Prot, 19, 603-608. https://doi.org/10.1016/S0261-2194(00)00079-X.
Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Rev. Entomol., 51, 45–66. https://doi.org/10.1146/annurev.ento.51.110104.151146.
Jackson, L. S. & Lee, K. (1991). Microencapsulation and food industry. Lebensm.-Wiss. u.-Technol., 24, 289-297.
Jafari, S. M.; Assadpoor, E.; He, Y. & Bhandari, B. (2008). Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Dry. Technol., 26, 816-835. https://doi.org/10.1080/07373930802135972.
Jankowska, M.; Rogalska, J.; Wyszkowska, J. & Stankiewicz, M. (2017). Molecular Targets for Components of Essential Oils in the Insect Nervous System—A Review. Molecules, 23, 34. https://doi.org/10.3390/molecules23010034.
Jardim, I. C. S. F.; Andrade, J. de A. & Queiroz, S. C. do N. (2009). Resíduos de agrotóxicos em alimentos: uma preocupação ambiental global - Um enfoque às maçãs. Quim. Nova., 32, 996–1012. https://doi.org/10.1590/S0100-40422009000400031.
Kim, S.-I.; Roh, J.-Y.; Kim, D.-H.; Lee, H.-S. & Ahn, Y.-J. (2003). Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. J. Stored Prod. Res., 39, 293–303, https://doi.org/10.1016/S0022-474X(02)00017-6.
Knaak, N. & Fiuza, L. M. (2010). Potencial dos óleos essenciais de plantas no controle de insetos e microrganismos. Neotrop. Biol. Conserv., 5, 120-132.
Koul, O.; Walia, S. & Dhaliwal, G. S. (2008). Essential Oils as Green Pesticides: Potential and Constraints. Biopesticide Int., 4, 63–84.
Lee, R. & Balick, M. J. (2005). Sweet wood—cinnamon and its importance as a spice and medicine. Explore, 1, 61–64. https://doi.org/10.1016/j.explore.2004.10.011.
Lemos, Y. P. (2017). Microencapsulação de óleo de buriti por coacervação complexa em matrizes de gelatina/alginato. Dissertação (Mestrado em Engenharia de alimentos) - Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de São José do Rio Preto. http://hdl.handle.net/11449/150282.
Lima, M. P.; Zoghbi, M. G. B.; Andrade, E. H. A.; Silva, T. M. D. & Fernandes, C. S. (2005). Constituintes voláteis das folhas e dos galhos de Cinnamomum zeylanicum Blume (Lauraceae). Acta Amaz., 35, 363-366. https://doi.org/10.1590/S0044-59672005000300009.
López-Mata, M. A.; Ruiz-Cruz, S.; Ornelas-Paz, J. J.; Del Toro-Sánchez, C. L.; Márquez-Ríos, E.; Silva-Beltrán, N. P.; Cira-Chávez, L. A. & Burruel-Ibarra, S. E. (2018). Mechanical, Barrier and Antioxidant Properties of Chitosan Films Incorporating Cinnamaldehyde. J. Polym. Environ., 26, 452–461. https://doi.org/10.1007/s10924-017-0961-1
Lorini, I.; Krzyzanowski, F. C.; França-Neto, J. DE B.; Henning, A. A. & Henning, F. A. (2015). Manejo Integrado de Pragas de Grãos e Sementes Armazenadas. 1nd ed.; Brasília, DF: Embrapa 2015, p. 84.
Luong-Van, E. K.; Madanagopal, T. T. & Rosa, V. (2020). Mechanisms of graphene influence on cell differentiation. Mater. Today Chem., 16, 100250. https://doi.org/10.1016/j.mtchem.2020.100250.
Maciel, L.M. & Tunes, L.V.M. (2021). A importância no controle de qualidade nas sementes de milho. BJD,. 7, 49934. https://doi.org/10.1016/j.mtchem.2020.100250.
Mahesh S.; Narasaiah, B. P.; Mandal, B. K. & Balaji, G. L. (2022). Fabrication of Titanium Dioxide Nanoparticles Using Sunflower Leaf Extract and Their Applications Towards the Synthesis and Biological Evaluation of Some Novel Phenanthro Imidazole Derivatives. Biointerface Res Appl. Chem, 12(3), 3372-3389. https://doi.org/10.33263/BRIAC123.33723389
Maia, M. F. & Moore, S. J. (2011). Plant-based insect repellents: a review of their efficacy, development and testing. Malar. J., 10, S11. https://doi.org/10.1186/1475-2875-10-S1-S11.
Makimori, R. Y.; Endo, E. H.; Makimori, J. W.; Zanqueta, E. B.; Ueda-Nakamura, T.; Leimann, F. V.; Gonçalves, O. H. & Dias Filho, B. P. (2020). Preparation, characterization and antidermatophytic activity of free- and microencapsulated cinnamon essential oil. J. Mycol. Med., 30, 100933. https://doi.org/10.1016/j.mycmed.2020.100933.
Mannaa, M. & Kim, K. D. (2017). Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology, 45, 240–254. https://doi.org/10.5941/MYCO.2017.45.4.240.
Mapa (2020). Ministério da Agricultura Pecuária e Abastecimento. Agrofit – Sistema de agrotóxicos fitossanitários. <http://extranet.agricultura.gov.br/agrofit_cons/!ap_praga_detalhe_cons?p_id_cultura_praga=3233>
Markellou, E.; Kalamarakis, A. E.; Kasselaki, A. M.; Dafermos, N.; Toufexi, E.; Leifert, C.; Karamaouna, F. & Konstantinidou-Doltsinis, S. (2009). Potential use of botanical fungicides against grey mould and powdery mildew in greenhouse grown vegetables. IOBC/WPRS Bulletin, 61-66.
Mathew, S. & Abraham, T. E. (2006). In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chem Toxicol, 44, 198–206. https://doi.org/10.1016/j.fct.2005.06.013.
McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr., 47, 611–649. https://doi.org/10.1080/10408390701289292.
Melo, A. M.; Turola Barbi, R. C.; Souza, W. F. C.; Luna, L. C.; Souza, H. J. B.; Lucena, G. L.; Quirino, M. R. & Sousa, S. Microencapsulated lemongrass (Cymbopogon flexuosus) essential oil: A new source of natural additive applied to Coalho cheese. J. Food Process. Pres., 44, e14783. https://doi.org/10.1111/jfpp.14783.
Mesterházy, A.; Oláh, J. & Popp, J. (2020). Losses in the Grain Supply Chain: Causes and Solutions. Sustainability, 12(6), 2342. https://doi.org/10.3390/su12062342.
Mishra, P.; Mishra, S. & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioproc. Tech., 92, 252–258. https://doi.org/10.1016/j.fbp.2013.08.003.
Mithöfer, A. & Boland, W. (2012). Plant Defense Against Herbivores: Chemical Aspects. Annu Rev Phytopathol, 63, 431–450. https://doi.org/10.1146/annurev-arplant-042110-103854.
Mossi, A. J.; Astolfi, V.; Kubiak, G.; Lerin, L.; Zanella, C.; Toniazzo, G.; Oliveira, D.; Treichel, H.; Devilla, I. A.; Cansian, R. & Restello, R. (2011). Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). J Sci Food Agric., 91, 273-277. https://doi.org/10.1002/jsfa.4181.
Mossi, A. J.; Zanella, C. A. ; Kubiak, G.; Lerin, L. A. ; Cansian, R. L.; Frandoloso, F. S.; Dal Prá, V.; Mazutti, M. A.; Costa, J. A. V. & Treichel, H. (2014). Essential oil of Ocotea odorifera: An alternative against Sitophilus zeamais. Renew Agric Food Syst., 29, 161-166. https://doi.org/10.1017/S1742170513000045
Naqqash, M. N.; Gökçe, A.; Bakhsh, A. & Salim, M. (2016). Insecticide resistance and its molecular basis in urban insect pests. Parasitol. Res., 115, 1363–1373. https://doi.org/10.1007/s00436-015-4898-9.
Nerio, L. S.; Olivero-Verbel, J. & Stashenko, E. E. (2009). Repellent activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). J. Stored Prod. Res., 45, 212–214. https://doi.org/10.1016/j.jspr.2009.01.002.
Noghabi, M. S. & Molaveisi, M. (2020). The effect of wall formulation on storage stability and physicochemical properties of cinnamon essential oil microencapsulated by spray drying. Chem. Zvesti, 74, 3455–3465. https://doi.org/10.1007/s11696-020-01171-9.
Nwanade, C. F.; Wang, M.; Wang, T.; Zhang, X.; Zhai, Y. & Zhang, S. (2021). The acaricidal activity of cinnamon essential oil: current knowledge and future perspectives. Int J Acarology, 47, 446-450. https://doi.org/10.1080/01647954.2021.1936632.
Ojeda-Sana, A. M.; Van Baren, C. M.; Elechosa, M. A.; Juárez, M. A. & Moreno, S. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 31, 189–195. https://doi.org/10.1016/j.foodcont.2012.09.022.
Osorio-Tobón, J. F.; Silva, E. K. & Meireles, M. A. A. (2016). Nanoencapsulation of flavors and aromas by emerging technologies. In: Encapsulations. Elsevier, Campinas, São Paulo, Brazil, p. 89–126. https://doi.org/10.1016/B978-0-12-804307-3.00003-X.
Papachristos, D. P. & Stamopoulos, D. C. (2002). Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J. Stored Prod. Res., 38, 117–128. https://doi.org/10.1016/S0022-474X(01)00007-8.
Pascual-Villalobos, M. J. (1996). Evaluation of insecticidal activity of Chrysanthemum coronarium L., plant extracts. Boletin de Sanidad, 22, 411–420.
Patel, R. P.; Patel, M. P. & Suthar, A. M. (2009). Spray drying technology: an overview. Indian. J. Sci. Technol., 2, 44–47.
Patriarca, A. & Pinto, V. F. (2017). Prevalence of mycotoxins in foods and decontamination. Curr. Opin. Food Sci, 14, 50-60. https://doi.org/10.1016/j.cofs.2017.01.011.
Pavela, R. & Benelli, G. (2016). Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci., 21, 1000–1007. https://doi.org/10.1016/j.tplants.2016.10.005.
Pavela, R. (2016). History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects – a review. Plant Protect. Sci., 52, 229–241. https://doi.org/10.17221/31/2016-PPS.
Pereira, C. A. M. & Maia, J. F. (2007). Estudo da atividade antioxidante do extrato e do óleo essencial obtidos das folhas de alfavaca (Ocimum gratissimum L.). Ciênc. Tecnol. Aliment., 27, 624–632. https://doi.org/10.1590/S0101-20612007000300030.
Pothakamury, U. R.; Barbosa-Cánova, G. V. (1995). Fundamental aspects of controlled release in foods. Trends Food Sci. Technol., 6, 397-406. https://doi.org/10.1016/S0924-2244(00)89218-3.
Prestes, I.; Rocha, L.; Nuñez, K. & Silva, N. (2019). Fungi and mycotoxins in corn grains and their consequences. Sci. Agric., 10, 559–570. https://doi.org/10.17268/sci.agropecu.2019.04.13.
Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot., 29, 913–920. https://doi.org/10.1016/j.cropro.2010.05.008.
Regnault-Roger, C.; Vincent, C. & Arnason, J. T. (2012). Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol., 57, 405–424. https://doi.org/10.1146/annurev-ento-120710-100554.
Reineccius, G. A. (2004). The Spray Drying of Food Flavors. Dry Technol., 22, 1289-1324. https://doi.org/10.1081/DRT-120038731.
Ribeiro-Santos, R.; Andrade, M.; De Melo, N. R.; Dos Santos, F. R.; Neves, I. A.; De Carvalho, M. G. & Sanches-Silva, A. (2017). Biological activities and major components determination in essential oils intended for a biodegradable food packaging. Ind. Crops Prod., 97, 201–210. https://doi.org/10.1016/j.indcrop.2016.12.006.
Rocha, M. P.; Taveira, J. H. Da S.; Prado, S. M. A. & Ataíde, M. V. (2020). Sistema de armazenamento e incidência dos principais fungos produtores de micotoxinas em grãos. BJD, 6, 50176–50193. https://doi.org/10.34117/bjdv6n7-608.
Rodrigues, I.; Handl, J. & Binder, E. M. (2011). Mycotoxin occurrence in commodities, feeds and feed ingredients sourced in the Middle East and Africa. Food Addit. Contam. Part B Surveill., 4, 168–179. https://doi.org/10.1080/19393210.2011.589034.
Rodríguez, J.; Martín, M. J.; Ruiz, M. A. & Clares, B. (2016). Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food. Res. Int., 83, 41-59. https://doi.org/10.1016/j.foodres.2016.01.032.
Roel, A. R. (2001). Utilização de plantas com propriedades inseticidas: uma contribuição para o desenvolvimento rural sustentável. Interações (Campo Grande), 1, 43–50. https://doi.org/10.20435/inter.v22i1.2856.
Rohwer, J. G. (1993). Lauraceae. In: Kubitzki, K.; Rohwer, J. G. & Bittrich, V. (eds) The families and genera of vascular plants. Magnoliid, hamamelid and caryophyliid families. Berlin, Springer - Verlag, v. 2, p. 336-391.
Saito, M. L.; Pott, A.; Ferraz, J. M. G. & Nascimento, R. D. S. (2004). Avaliação de plantas com atividade deterrente alimentar em Spodoptera frugiperda (J.E. Smith) e Anticarsia gemmatalis Hubner. Pesticidas: R. Ecotoxicol. e Meio Ambiente, 14.
Santos, J. C. dos; Faroni, L. R. D.; Simões, R. de O.; Pimentel, M. A. G. & Sousa, A. H. (2009). Toxicidade de inseticidas piretróides e organofosforados para populações brasileiras de Sitophilus zeamais (Coleoptera: Curculionidae). Biosci. J., 25, 75–81.
Santos, J. P. (2006). Inovações técnicas para armazenamento de milho na propriedade familiar. In: XXVI Congresso Nacional de Milho e Sorgo. 1nd ed. EMBRAPA, Milho e Sorgo. Minas Gerais, p. 2.
Schiper, L.P. (1999). Segredos e virtudes das plantas medicinais. Rio de Janeiro: Reader's Digest Brasil.
Schmidt, G. H. & Streloke, M. (1994). Effect of Acorus calamus (L.) (Araceae) oil and its main compound β-asarone on Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae). J. Stored Prod. Res., 30, 227–235. https://doi.org/10.1016/0022-474X(94)90050-R.
Shao, W.; Pan, X.; Liu, S.; Teng, F. & Yuan, S. (2018). Microencapsulation of algal oil using spray drying technology. Food Technol. Biotechnol., 56, 65-70. https://doi.org/10.17113/ftb.56.01.18.5452.
Shen, F.; Huang, Y.; Jiang, X.; Fang, Y.; Li, P.; Liu, Q.; Hu, Q. & Liu, X. (2020). On-line prediction of hazardous fungal contamination in stored maize by integrating Vis/NIR spectroscopy and computer vision. Spectrochim. Acta A Mol., 229, 118012. https://doi.org/10.1016/j.saa.2019.118012.
Shishir, M. R. I.; Xie, L.; Sun, C.; Zheng, X. & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol., 78, 34–60. https://doi.org/10.1016/j.tifs.2018.05.018.
Silva, E. K.; Fernandes, R. V. B.; Borges, S. V.; Botrel, D. A. & Queiroz, F. (2014). Water adsorption in rosemary essential oil microparticles: Kinetics, thermodynamics and storage conditions. J. Food Eng., 140, 39–45. https://doi.org/10.1016/j.jfoodeng.2014.05.003.
Singh, G.; Maurya, S.; Delampasona, M. P. & Catalan, C. A. N. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol, 45, 1650–1661. https://doi.org/10.1016/j.fct.2007.02.031.
Sonker, N.; Pandey, A. K. & Singh, P. (2014). Efficiency of Artemisia nilagirica (Clarke) Pamp. essential oil as a mycotoxicant against postharvest mycobiota of table grapes. J. Sci. Food Agric., 95, 1932–1939. https://doi.org/10.1002/jsfa.6901.
Sotelo-Bautista, M.; Bello-Perez, L. A.; Gonzalez-Soto, R. A.; Yañez-Fernandez, J. & Alvarez-Ramirez, J. (2020). OSA-maltodextrin as wall material for encapsulation of essential avocado oil by spray drying. J. Dispers. Sci. Technol., 41, 235–242. https://doi.org/10.1080/01932691.2018.1562939.
Souza, V. G. L.; Rodrigues, C.; Ferreira, L.; Pires, J. R. A.; Duarte, M. P.; Coelhoso, I. & Fernando, A. L. (2019). In vitro bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Ind. Crops Prod., 140, 111563. https://doi.org/10.1016/j.indcrop.2019.111563.
Stejskal, V.; Hubert, J.; Aulicky, R. & Kucerova, Z. (2015). Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J Stored Prod Res, 64, 122–132. https://doi.org/10.1016/j.jspr.2014.12.006.
Suleiman, R.; Williams, D.; Nissen, A.; Bern, C. J. & Rosentrater, K. A. (2015). Is flint corn naturally resistant to Sitophilus zeamais infestation? J. Stored Prod. Res., 60, 19–24. https://doi.org/10.1016/j.jspr.2014.10.007.
Sun, Q.; Shang, B.; Wang, L.; Lu, Z. & Liu, Y. (2016). Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Appl. Microbiol. Biotechnol., 100, 1355–1364. https://doi.org/10.1007/s00253-015-7159-z.
Sun, X. D.; Su, P. & Shan, H. (2017). Mycotoxin Contamination of Maize in China. Compr. Rev. Food Sci., 16, 835-849. https://doi.org/10.1111/1541-4337.12286.
Suthisut, D.; Fields, P. G. & Chandrapatya, A. 2011). Contact Toxicity, Feeding Reduction, and Repellency of Essential Oils from Three Plants from the Ginger Family (Zingiberaceae) and their Major Components Against Sitophilus zeamais and Tribolium castaneum. J. Econ. Entomol., 104, 1445-1454. https://doi.org/10.1603/EC11050.
Tajkarimi, M. M.; Ibrahim, S. A. & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21, 1199-1218. https://doi.org/10.1603/EC11050.
Ti, E. S.; Ta, E. D. & Am, A. E. A. (2019). Investigation of fungus associated within cooccurrence of aflatoxins and ochratoxin a in cereals from Egypt. Mojt., 5, 92–99. https://doi.org/10.15406/mojt.2019.05.00161.
Torre, J. E.; Gassara, F.; Kouassi, A. P.; Brar, S. K. & Belkacemi, K. (2015). Spice use in food: Properties and benefits. Crit. Rev. Food. Sci. Nutr., 57, 1078–1088. https://doi.org/10.1080/10408398.2013.858235.
Torres, C.; Silva, G.; Tapia, M.; Rodríguez, J. C.; Figueroa, I.; Lagunes, A.; Santillán, C.; Robles, A.; Aguilar, S. & Tucuch, I. (2014). Insecticidal activity of Laurelia sempervirens (Ruiz & Pav.) Tul. Essential oil against Sitophilus zeamais Motschulsky. Chil. J. Agric. Res., 74, 421–426. http://dx.doi.org/10.4067/S0718-58392014000400007.
Tournas, V. H. &; Niazi, N. S. (2017). Potentially toxigenic fungi from selected grains and grain products. J. Food Saf., 38. https://doi.org/10.1111/jfs.12422.
Trevizan, L. R. P. & Baptista, G. C. de. (2000). Resíduos de deltametrina em grãos de trigo e em seus produtos processados, determinados por cromatografia gasosa. Sci. Agric., 57, 199–203. https://doi.org/10.1590/S0103-90162000000200002.
Tripathi, A. K.; Upadhyay, S.; Bhuiyan, M. & Bhattacharya, P. R. (2009). A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacognosy Phytother., 1, 052–063. https://doi.org/10.5897/JPP.9000003.
Ugalde, M. L.; Cezaro, A.; Vedovatto, F.; Paroul, N.; Steffens, J.; Valduga, E.; Backes, G. T.; Franceschi, E. & Cansian, R. L. (2017). Active starch biopolymeric packaging film for sausages embedded with essential oil of Syzygium aromaticum. J. Food Sci. Technol. Mysore, 54, 2171-2175. https://doi.org/10.1007/s13197-017-2624-6
Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P. & Chomnawang, M. T. (2016). Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement Altern. Med., 16, 158. https://doi.org/10.1186/s12906-016-1134-9.
Vedovatto, F.; Junior, C.V.; Astolfi, V.; Mielniczki-Pereira, A. A.; Roman, S. S.; Paroul, N.; Cansian, R. L. (2015). Essential oil of Cinnamodendron dinisii Schwanke for the control of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Rev Bras Pl Med., 17, 1055-1060, 2015.
Vélez, M.; Barbosa, W. F.; Quintero, J.; Chediak, M. & Guedes, R. N. C. (2017). Deltamethrin- and spinosad-mediated survival, activity and avoidance of the grain weevils Sitophilus granarius and S. zeamais. J. Stored Prod. Res., 74, 56–65. https://doi.org/10.1016/j.jspr.2017.10.002.
Vélez, M.; Bernardes, R. C.; Barbosa, W. F.; Santos, J. C. & Guedes, R. N. C. (2019). Walking activity and dispersal on deltamethrin- and spinosad-treated grains by the maize weevil Sitophilus zeamais. Crop Protection, 118, 50–56. https://doi.org/10.1016/j.cropro.2018.12.013.
Villaverde, J. J.; Sevilla-Morán, B.; Sandín-España, P.; López-Goti, C. & Alonso-Prados, J. L. (2014). Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci., 70, 2–5. https://doi.org/10.1002/ps.3663.
Voris, D. G. R.; Afonso, C. H. V.; Filho, C. A. C.; Almeida, F.; Conceição, O. J.; Brito, D. Q. M.; Moraes, C. S.; Lima, K. S. C.; Lima, J. B. P.; Mirand, M. G.; Lima, A. L. S.; Avelar, K. E. S.; Friede, R. & Lima, A. L. S. (2017). Estudos Etnofarmacológicos de óleos essenciais com atividade larvicida contra o Mosquito Aedes Aegypti. Semioses (Rio de Janeiro), 11, 86-94.
Wandrey, C.; Bartkowiak, A. & Harding, S. E. (2010). Materials for Encapsulation. In: Encapsulation Technologies for Active Food Ingredients and Food Processing. New York, NY: Springer New York, p. 31–100. https://doi.org/10.1007/978-1-4419-1008-0_3.
Wang, Y.; Zhang, L.-T.; Feng, Y.-X.; Zhang, D.; Guo, S.-S.; Pang, X.; Geng, Z.-F.; Xi, C. & Du, S.-S. (2019). Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind. Crops Prod., 140, 111640. https://doi.org/10.1016/j.indcrop.2019.111640.
Wu, F. (2015). Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J., 8, 137–142. https://doi.org/10.3920/WMJ2014.1737.
Xie, Y.; Huang, Q.; Wang, Z.; Cao, H. & Zhang, D. (2017). Structure-activity relationships of cinnamaldehyde and eugenol derivatives against plant pathogenic fungi. Ind. Crops Prod., 97, 388–394. https://doi.org/10.1016/j.indcrop.2016.12.043.
Yang, J.; Xiao, J. & Ding, L. (2009). An investigation into the application of konjac glucomannan as a flavor encapsulant. Eur. Food Res. Technol., 229, 467–474. https://doi.org/10.1007/s00217-009-1084-2.
Yoon, M.-Y.; Cha, B. & Kim, J.-C. (2013). Recent Trends in Studies on Botanical Fungicides in Agriculture. Plant Pathol. J, 29, 1–9. https://doi.org/10.5423/PPJ.RW.05.2012.0072.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Mariane Minozzo; Juliana Steffens ; Geciane Toniazzo Backes; Natalia Paroul; Rogerio Luis Cansian
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.