Síntesis del precursor de zeolita MCM-22 y modificacións termal, deslamination y acidification

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i14.22539

Palabras clave:

Síntesis; Precursor (P)MCM-22; MCM-22; Calcinación; Delaminación; Acidification.

Resumen

En este trabajo se preparó el precursor (P) MCM-22 mediante el método hidrotermal en un sistema estático y se realizaron modificaciones térmicas, deslaminación y acidificación. Este estudio tiene como objetivo optimizar la modificación que promueve la desorganización de las laminillas precursoras zeolíticas y hace más accesibles los sitios activos. El precursor (P) MCM-22 se preparó en condiciones hidrotermales con una temperatura de 150 ° C y un tiempo de cristalización de 7 días. El proceso de deslaminación se llevó a cabo mediante hinchamiento del precursor laminar con CTABr y posterior exfoliación por sonicación. Se utilizaron técnicas de caracterización como la difractometría de rayos X, el análisis químico por espectroscopia de rayos X de dispersión de energía y la adsorción física de nitrógeno. Los resultados de XRD revelaron que se formaron el precursor (P) MCM-22 y la zeolita MCM-22. Se observó mediante el análisis XRD de los productos de las síntesis realizadas, que la presencia del tensioactivo CTABr favorece la desorganización de las laminillas. También se concluye que hubo influencia de la acidificación en las propiedades de los productos finales.

Citas

Abdullah, N. H., Shameli, K., Etesami, M., Chan, Abdullah, E., Abdullah, L. C. (2017). Facile and green preparation of magnetite/zeolite nanocomposites for energy application in a single-step procedure. Journal of Alloys and Compounds, 719, 218–26. https://doi.org/ 10.1016/J.Jallcom.2017.05.028.

Araújo Filho, G. F. F., Araújo, A. B. F. S., Silva, L. R. B., Barros, T. R. B., Barbosa, T. S. B., De Paula, G. M., Barbosa, T. L. A., & Rodrigues, M. G. F. (2021). Valorization of solid waste (sugarcane bagasse ash) with applications in synthesis of zeolite NaA. Brazilian Journal of Development, 7, 58748-58763. https://doi.org/10.34117/bjdv7n6-324

Barbosa, A. S. (2011). 81 p. Desenvolvimento de catalisadores a base de Pt, Ni e Ru suportados em zeólitas ZSM-5 mais resistentes a enxofre na aplicação de reforma de naftas ácidas. Dissertação (Mestrado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande.

Barbosa, A. S., Barbosa, A. S., Santos, E. R. F., Leite, R. C. N., & Rodrigues, M. G. F. (2012). Obtención de la zeolita MCM-22 através de la síntesis hidrotermal utilizando diferentes métodos. Avances en Ciencias e Ingeniería, 3(3), 59-67.

Barbosa, A. S., Lima, L. A., Sousa, B. V., Santos, E. R. F., & Rodrigues, M. G. F. (2010). Influence of Crystallization Time on Structural and Morphological Characteristics the Precursor of Zeolite MCM-22. Materials Science Forum, 660-66, 567 - 572. https://doi.org/10.4028/www.scientific.net/MSF.660-661.567

Barbosa, A.S., Santos, E.R.F., Leite, R.C.N., & Rodrigues, M.G.F. (2012). Estudo da influência da fonte de sílica na síntese do precursor zeolítico MCM-22. Remap. 7.3, 180–184.

Calgaroto, C., Scherer, R. P., Calgaroto, S., Oliveira, J. V., Oliveira, D., Pergher, S. B.C. (2011). Immobilization of porcine pancreatic lipase in zeolite MCM 22 with different Si/Al ratios. Applied Catalysis A: General, 394, 101–104. https://doi.org/10.1016/j.apcata.2010.12.032

Carriço, C. S., Cruz, F.T., Santos, M.B., Pastore, H.O., Andrade, M.C., Mascarenhas, A.J.S. (2013). Efficiency of zeolite MCM-22 with different SiO2/Al2O3 molar ratios in gas phase glycerol dehydration to acrolein. Microporous and Mesoporous Materials. 181, 74-82. https://doi.org/10.1016/j.micromeso.2013.07.020

Cejka, J., Centib, G., Parientec, J. P. Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: opportunities, perspectives and open problems. Catalysis Today, 179, 2-15. https://doi.org/10.1016/j.cattod.2011.10.006

Conceptión, P., López, C., Martínez, A., Puntes, V. F. (2004). Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 And ITQ-2 zeolites for the Fischer–Tropsch Synthesis reaction. Journal of Catalysis, 228, 321-332. https://doi.org/10.1016/j.jcat.2004.09.011

Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216, 298-312. https://doi.org/10.1016/S0021-9517(02)00132-X

Corma, A., Fornés, V., Guil, J. M., Pergher, S. B., Maesen, T. L. M., Buglass, J. G. (2000). Preparation, characterization and catalytic activity of ITQ-2, a delaminated zeolite. Microporous Mesoporous Materials, 38, 301-309. https://doi.org/10.1016/S1387-1811(00)00149-9

Corma, A., Fornés, V., Martínez, T. J., Pergher, S. B. (1999). Delaminated Zeolites: Combining the benefits of zeolites and mesoporous materials for catalytic uses. Journal of Catalysis, 186, 57-63. https://doi.org/10.1006/jcat.1999.2503

Corma, A., Fornés, V., Pergher, S. B., Maesen, T. L. M., Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396, 353-356. https://doi.org/10.1038/24592

Corma, A., Fornés, V., Pergher, S.B., Patent Ep 9605004, 1996.

Cundy, C. S., Cox, P. A. (2005). The hydrothermal synthesis of zeolites: precursors, intermediates, and reaction mechanism. Microporous and Mesoporous Materials, 82, 1-78. https://doi.org/10.1016/j.micromeso.2005.02.016

Paula, G.M., De Paula, L. N. R., Lima, E. G., Silva, F. M. N., & Rodrigues M.G.F. (2019). Síntese da zeólita ZSM-5 utilizando como fonte alternativa de sílica a argila Vermiculita. In Anais do XXI Congreso Argentino de Catálisis.

Elyassi, B., Zhang, X., Tsapatsis, M., (2014). Long-term steam stability of MWW structure zeolites (MCM-22 And ITQ-1). Microporous and Mesoporous Materials. 193, 134-144. https://doi.org/10.1016/j.micromeso.2014.03.012

Hao, J., Wang, Y., Liu, G., Zhang, J., Li, Guoahu, L., Ma, X. (2014). Synthesis of ITQ-2 zeolite and catalytic performance in n-dodecane craking. Chinese Journal of Chemical Engineering. 22, 869-874. https://doi.org/10.1016/j.cjche.2014.06.008

He, Y. J., Nivarthy, G. S., Eder, F., Seshan, K., Lercher, J. A. (1998). Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36. Microporous and Mesoporous Materials, 25, 207-224. https://doi.org/10.1016/S1387-1811(98)00210-8

Jung, H. J., Park, S. S., Shin, C. H., Park, Y. K., Hong, S. B. (2007). Comparative catalytic studies on the conversion of 1-butene and n-butane to isobutene over MCM-22 and ITQ-2 zeolite. Journal of Catalysis, 245, 65 – 74. https://doi.org/10.1016/j.jcat.2006.09.015

Kresge, C. T., Roth, W. J., Simmons, K. G., Vartuli, J. C. (1992). WO Patent 92/11934.

Lawton, S. L., Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C., D., Hatzikos, G. H., Lissy, D. N., Rubin, M. K., Timken, H.-K. C., Steuernagel, S., Woessner, D. E. (1996) Zeolite MCM-49: A three-dimensional MCM-22 analogue synthesized by in situ crystallization. Journal of Physical and Chemical, 100, 3788-3798.

Lawton, S. L., Leonowicz, M. E., Partridge, R. D., Chu, P., Rubin, M. K. (1998). Twelve-ring pockets on the external surface of MCM-22 crystals. Microporous and Mesoporous Materials, 23, 109-117. https://doi.org/10.1016/S1387-1811(98)00057-2

Leite, R. C. N. (2007). 94p. Desenvolvimento de zeólitas do tipo MCM-22 destinadas a serem utilizadas como aditivos em catalisadores de FCC. (2007). Dissertação (Mestrado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande.

Leite, R. C. N. Síntese Hidrotérmica de Zeólitas do Tipo MCM-22 com Rotas de Síntese com Mínimo de Direcionadores Orgânicos e Preparação de Catalisadores Níquel, Platina e Rutênio. (2011). 143p. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande.

Leite, R. C. N., Sousa, B. V., & Rodrigues, M. G. F. (2009). Static synthesis and characterization of MCM-22 zeolite applied as additive in fluid catalytic cracking operations, Brazilian Journal of Petroleum and Gas, 3, 75 - 82.

Lima, L.A., De Paula, G.M., Nogueira, A.C., Quintela, P.H.L., & Rodrigues, M.G.F. (2015). Síntese de peneiras moleculares SBA-15, MCM-41 e zeólita Y a partir de cinzas de casca de arroz como fonte de sílica. In Anais do 59º Congresso Brasileiro de Cerâmica.

Lima, W. S. (2015). 103p. Desenvolvimento de catalisadores Co/Ru suportados na zeólita MCM-22 e destinados a aplicação na síntese de Fischer-Tropsch. (2015). Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande.

Marques, A. L. S.; Monteiro, J. L. F.; Pastore, H. O. (1999). Static crystallization of zeolites MCM-22 and MCM-49. Microporous and Mesoporous Materials, 32, 131-145. https://doi.org/10.1016/S1387-1811(99)00099-2

Martínez, A., López, C., Márquez, F., Díaz, I. (2003). Fischer–Tropsch Synthesis of hydrocarbons Over Mesoporous Co/SBA-15 Catalysts: The influence of metal loading, Cobalt precursor, and promoters. Journal of Catalysis, 220, 486-499. https://doi.org/10.1016/S0021-9517(03)00289-6

Masters, A. F., Maschmeyer, T. (2011). Zeolites – From curiosity to cornerstone. Microporous and Mesoporous Materials, 142, 423-438.

Narkhede, V. V., Gies, H. (2009). Crystal structure of MCM-22 (MWW) and its delaminated zeolite ITQ-2 from high-resolution powder X-Ray diffraction data: an analysis using Rietveld technique and atomic pair distribution function. Chemical Materials, 21, 4339-4346. https://doi.org/10.1021/cm901883e

Quintela, P. H. L. (2016). 117p. Síntese da zeólita MCM-22 a partir de sistema reacional contendo sódio e potássio e desenvolvimento de catalisadores ácidos com topologia MWW modificada. Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande.

Ravishankar, R., Li, M. M., Borgna, A. (2005). Novel utilization of MCM-22 molecular sieves as supports of cobalt catalysts in the Fischer–Tropsch Synthesis. Catalysis Today, 106, 149-153. https://doi.org/10.1016/j.cattod.2005.07.123

Richards, R. Surfaces and nanomolecular catalysis. Taylor & Francis Group, LCC, 2006.

Rodrigues, M. G. F., Barbosa, A. S., Coriolano, A. C. F., Silva, E. F. B., & Araujo, A. S. (2015) Evaluation of the acid properties of aluminossilicate MCM-22 material synthesized under static conditions. Materials Science-Poland, 33(1), 131-136. https://doi.org/10.1515/msp-2015-0019

Roth, W. J. (2007). Synthesis of delaminated and pillared zeolitic materials. In: Ĉejka, J., Van Bekkum, H.; Corma, A.; Schuth, F. (eds). Introduction to zeolite science and practice. 3. ed. Rev. Amsterdam: Elsevier, 221-239. (Studies in Surface Science and Catalysis, v.168).

Roth, W. J., Dorset, D. L. (2011). Expanded view of zeolites structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142, 32-36. https://doi.org/10.1016/j.micromeso.2010.11.007

Rubin, M. K., Chu, P. (1990). Composition of synthetic porous cristalline material, its synthesis and use. U.S. Patent 4,959,325.

Santos, E. R. F., Barbosa, A. S., Leite, R. C. N., & Rodrigues, M. G. F. (2012). Síntesis y caracterización de catalizadores Ni/MCM-22, Pt/MCM-22 y Pt-Ni/MCM-22. Avances en Ciencias e Ingeniería, 3(2), 35-45.

Santos, E.R.F., Sousa, A.B., Leite, R.C.N., Laborde, H.M., Menezes, R.R., & Rodrigues, M.G.F. (2015). Preparation of Zeolite MCM-22 Using the Rice Husk Ash as Silica Source. Materials Science Forum, 805, 646-650. https://doi.org/10.4028/www.scientific.net/MSF.805.646

Severo, W.K.G., De Paula, G.M., Lima E.G., & Rodrigues M.G.F. (2016). Estudo da cristalização da zeólita ZSM-5 empregando fonte de sílica alternativa: cinzas de casca de arroz. In Anais do 60º Congresso Brasileiro de Cerâmica.

Silva, A. R., Guimarães, V., Carneiro, L., Nunes, N., Borges, S., Pires, J., Martins, A., Carvalho, A. P. (2013). Copper (II) Aza-Bis (Oxasoline) complex immobilized onto ITQ-2 and MCM-22 based materials as heterogeneous catalysts for the cyclopropanation of styrene. Microporous and Mesoporous Materials, 179, 231-241. https://doi.org/10.1016/j.micromeso.2013.05.029

Silva, F. M. N., Silva, L. R. B., Silva, E. T. S.; & Rodrigues, M. G. F. (2019). Síntese da zeólita mordenita e modificação com CTMABr. Aplicação na remoção do corante Rodamina B. In Anais do XXI Congreso Argentino de Catálisis.

Silva, F. N. M., Barbosa, T. L. A., Rodrigues, D. P. A., & Rodrigues, M. G. F. (2019). Síntese da zeólita SAPO-34 e aplicação na remoção do corante reativo amarelo BF-3R. In Anais do XXI Congreso Argentino de Catálisis.

Silva, F. N. M., Lima, E. G., Barbosa, T. L. A., & Rodrigues, M. G. F. (2019). Evaluation of Catalysts Mordenite and MoO3/Mordenite in the Production of Biodiesel. Materials Science Forum, 958, 11-16.

Silva, L. R. B., Barbosa, T. L. A., Bezerra, J. U. L., & Rodrigues, M. G. F. (2019). Zeólita ZSM-5 não modificada e modificada com surfactante CTMABr: aplicação na remoção do corante amarelo BF-3R. In Anais do 63º Congresso Brasileiro de Cerâmica, Bonito.

Silva, L. R. B., Barbosa, T. L. A., Bezerra, J. U. L., & Rodrigues, M. G. F. (2020). Síntese da Zéolita ZSM-5 para ser utilizada como adsorvente na remoção do corante reativo BF3r: influência do pH. In Processos Químicos e Tecnológicos (pp. 66 - 78).

Silva, V. J. Síntese da zeólita ZSM-5 a partir do caulim e preparação de catalisadores (Co/ZSM-5 e Co/Ru/ZSM-5) visando aplicação na reação de Fischer-Tropsch. (2012). Tese (Doutorado em Engenharia Química), Universidade Federal de Campina Grande, Campina Grande.

Silva, V. J., Crispim, A. C., Queiroz, M. B., Menezes, R. R., Laborde, H. M., & Rodrigues, M. G. F. (2010). Structural and Morphology Characterization ZSM-5 Zeolite by Hydrothermal Synthesis. Materials Science Forum, 660-661, 543 - 548.

Silva, V.J., & Rodrigues, M.G.F. (2015). Synthesis and characterization of ZSM-5 zeolite using kaolin as Si and Al source. Materials Science Forum, 805, 651-656.

Sousa, A. B., Barbosa, A. S., Rodrigues, M. G. F., & Laborde, H. M. (2012). Preparation and characterization of zeolite ZSM-5 in the template: Effect of crystallization time on the structure and textural properties. Materials Science Forum, 727-728, 1233 - 1237.

Yurekli, Y. (2016). Removal of heavy metals in wastewater by using zeolite nanoparticles impregnated polysulfone membranes. Journal of Hazardous Materials, 309, 53–64. https:// doi.org/10.1016/J.Jhazmat.2016.01.064

Zhang, J. et al. (2019). Mesopore differences between pillared lamellar MFI and MWW zeolites probed by atomic layer deposition of titania and consequences on photocatalysis. Microporous and Mesoporous Materials, 276, 260–269.

Publicado

14/11/2021

Cómo citar

LIMA, W. S. .; SILVA, F. A. de S. .; QUINTELA, P. H. L. .; RODRIGUES, M. G. F. . Síntesis del precursor de zeolita MCM-22 y modificacións termal, deslamination y acidification. Research, Society and Development, [S. l.], v. 10, n. 14, p. e599101422539, 2021. DOI: 10.33448/rsd-v10i14.22539. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22539. Acesso em: 11 dic. 2024.

Número

Sección

Ingenierías