Calidad microbiológica y sensorial de pitaya de cerrado recién cortada sometido a diferentes desinfectantes
DOI:
https://doi.org/10.33448/rsd-v10i15.22628Palabras clave:
Selenicereus setaceus; Procesamiento mínimo; Microbiota contaminante; Higienización.Resumen
El objetivo de este trabajo fue evaluar la eficacia de los desinfectantes hipoclorito de sodio (NaClO), peróxido de hidrógeno (H2O2) y dicloroisocianurato de sodio (NaDCC) en la reducción microbiana y su influencia en la calidad sensorial del pitaya del cerrado mínimamente procesada, almacenado a 6 ± 1ºC, durante 15 días. Las pitayas (Selenicereus setaceus) fueron previamente seleccionadas, lavadas y desinfectadas con NaClO 50 y 100 mg.L-1, H2O2 3% y 6% y NaDCC 50 y 100 mg.L-1, durante 15 minutos. Los frutos no sanificados se consideraron control. Luego, los frutos se cortaron transversalmente y se pelaron, para que la pulpa se presentara en mitades. Luego, las pitayas mínimamente procesadas se empacaron en paquetes de polipropileno envueltos en cloruro de polivinilo (PVC) de 15 µm durante 15 días a 6 ± 1ºC y los análisis se realizaron cada 3 días. Recuento de coliformes a 35ºC y 45ºC y presencia de Salmonella sp. no se observaron en ninguna de las muestras analizadas durante el período de almacenamiento. Los desinfectantes fueron estadísticamente similares durante el almacenamiento, con una reducción microbiana del orden de 1.07 log UFC.g-1 para hongos filamentosos y levaduras y microorganismos aeróbicos psicrotróficos en relación con el control. El análisis sensorial mostró que la pitaya mínimamente procesada no se vio influenciada por los desinfectantes, mostrando una reducción gradual en sus grados con el tiempo de almacenamiento, lo que resultó en una vida útil de 11 días, basada en grados superiores a 5 ("ni me gustó / no me gustó) para el aspecto general, sabor e impresión y mayor que 3 ("no sé") para la intención de compra.
Citas
Allende, A., Martinez, B., Selma, M. V., Gil, M. I., Suárez, J. E. & Rodríguez, A. (2007). Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Food Microbiology, 24(78), 759- 766. 10.1016/j.fm.2007.03.002
Babic, I. & Watada, A. E. (1996). Microbial population of fresh cut spinach leaves affected by controlled atmospheres. Postharvest Biology Technology, 9(2), 187-193. 10.1016/S0925-5214(96)00047-6
Beuchat, L. R. (2002). Ecological factor influencing survival and growth of humans pathogens on raw fruits and vegetables. Microbes and Infections, 4(4), 413-423. 10.1016/s1286-4579(02)01555-1
Brackett, R. E. (1992). Shelf stability and safety of fresh produce as influenced by sanitation and disinfection. Journal Food Protection, 55(10), 808-814. 10.4315/0362-028X-55.10.808
Brasil. (2001). Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução RDC nº12, de 2 de janeiro de 2001. htpp://www.anvisa.gov.br/legis/resoluções/ 12_01.htm
Brecht, J. K. (1995). Physiology of lightly processed fruits and vegetables. Hostscience, 30(1), 18-22. 10.21273/HORTSCI.30.1.18
Burnett, A. B., Iturriaga, M. H., Escartin, E. F., Pettigrew, C. A. & Beuchat, L. R. (2004). Influence of variations in methodology on populations of Listeria monocytogenes recovered from lettuce treated with sanitizers. Journal of Food Protection, 67(1), 742-750. 10.4315/0362-028X-67.4.742
Cantweel, M. (1992). Postharvest handling systems: minimally processed fruits and vegetables. In: kader, A. A. (Ed.). Postharvest technology of horticultural crops. Davis, United States: University of California.
Centers for Disease Control and Prevention. (2009). Investigation update: outbreak of Salmonella Typhimurium infections: 2008-2009. http://www.cdc.gov/print.do?url=http%3A//www.cdc.gov/salmonella/ typhimurium/
Cliffe-Byrnes, V. & O’Beirne, D. (2005). Effects of chlorine treatment and packaging on the quality and shelf-life of modified atmosphere (MA) packaged coleslaw mix. Food Control, 16(8), 707-716. 10.1016/j.foodcont.2004.06.008
Ferreira, D. F. (1999). Sistema para Análise de Variância para Dados Balanceados (SISVAR). UFLA.
Ferreira, V. L. P., Almeida, T. C. A., Pettinelli, M. L. C. V., Silva, M. A. A. P., Chaves, J. B. & Barbosa, E. M. M. (2000). Análise sensorial: testes discriminativos e afetivos. Campinas, Brasil: Sociedade Brasileira de Ciência e Tecnologia de Alimentos.
Food and Drug Administration. (2001). Center for Food Safety and Applied Nutrition. Evaluation and definition of potentially hazardous foods: comparison of NSF and ABA protocols to determine whether a food requires time/temperature control for safety. http://vm.cfsan.fda.gov/dms/ admehg.html
Food Standards Agency. (2007). Morrisons recalls leaf lettuce. http://www.food.gov.uk/news/newsarchive/2007/apr/morrisalad
Gangliard, J. V. & Karns, J. S. (2000). Leaching of Escherichia coli 0157: H7 in diverse soils under various agricultural management practices. Applied and Environmental Microbiology, 66(3), 877-883. 10.1128/aem.66.3.877-883.2000
Huxsoll, C. C. & Bolin, H. R. (1989). Processing and distribution alternatives for minimally processed fruits and vegetables. Food Technology, 43(2), 124-128.
Institute of Food Technologists. (1981). Sensory evaluation division: guidelines for the preparation and review of papers reporting sensory evaluation date. Food Technology, 35(4), 16-17.
International Commission on Microbiological Specifications for Foods. (2000). Microorganisms in foods. Toronto, Canada: University of Toronto.
International Fresh-Cut Produce Association. (2021) Fresh production. http://www.fresh-cuts.org
Martínez, M. V. & Whitaker, J. R. (1995). The biochemistry and control of enzymatic browning. Trends in Food Science & Technology, 6(6), 195-200.
Martínez-Sánchez, A., Allende, A., Bennett, R. N., Ferreres, F. & Gil, M. I. (2006). Microbial, nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biology and Technology, 42(1), 86-97. 0.1016/j.postharvbio.2006.05.010
Meilgaard, M., Civille, G. V. & Carr, B. T. (1999). Sensory evaluation techniques. CRC.
Morton, R. D. Aerobic plate count. In: Downes, F. P. & Ito, K. (2001). Compendium of methods for the microbiological examinations of foods. Washington, United States: American Public Health Association.
Ölmez, H. & Kretzschmar, U. (2009). Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT - Food Science and Technology, 42(3), 686-693. 10.1016/j.lwt.2008.08.001
Paula, N. R. F., Vilas-Boas, E. V. B., Rodrigues, L. J., Carvalho, R. A. & Piccoli, R. H. (2009). Qualidade de produtos minimamente processados e comercializados em gôndolas de supermercados nas cidades de Lavras - MG, Brasília - DF e São Paulo – SP. Ciência e Agrotecnologia, 33(1), 219-227. 10.1590/S1413-70542009000100031
R Development Core Team. (2009). R: a language and environment for statistical computing. http://www.R-project.org
Reis, K. C., Siqueira, H. H., Alves, A. P., Silva, J. D. & Lima, L. C. O. (2008). Efeito de diferentes sanificantes sobre a qualidade de morango cv. Oso Grande. Ciência e Agrotecnologia, 32(1), 196-202. 10.1590/S1413-70542008000100029
Rolle, R. S. & Chism, G. W. (1987). Physiological consequences of minimally processed fruits and vegetables. Journal of Food Science, 10(3), 57-178. 10.1111/j.1745-4557.1987.tb00856.x
Ruiz-Cruz, S., Luo, Y., González, R., Tao, Y. & González-Aguilar, G. A. (2006). Acidified sodium chlorite as an alternative to chlorine to control microbial growth on shredded carrots while maintaining quality. Journal of the Science of Food and Agriculture, 86(2), 1887-1893. 10.1002/jsfa.2550
Santos, H. P. & Valle, R. H. P. (2005). Influência da sanificação na qualidade de melão ‘amarelo’ minimamente processado: parte II. Ciência e Agrotecnologia, 29(5), 1034-1038. 10.1590/S1413-70542005000500018
Sapers, G. M. (2001). Efficacy of washing and sanitizing methods for disinfection of fresh fruit and vegetable products. Food Technology and Biotechnology, 39(4), 305-311.
Sapers, G. M. & Simmons, G. F. (1998). Hydrogen peroxide disinfection of minimally processed fruits and vegetables. Food Technology, 52(2), 48-52.
Suslow, T. V. (2001). Water disinfection: a practical approach to calculating dose values for pre-harvest and postharvest applications. http://vric.ucdavis.edu
Wiley, R. C. (1997). Fruits y hortalizas minimamente procesadas y refrigeradas. Zaragoza, España: Acribia.
Zagory, D. (1999). Effects of post-processing handling and packaging on microbial population. Postharvest Biology and Technology, 15(3), 313-321. 10.1016/s0925-5214(98)00093-3
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Luiz José Rodrigues; Nélio Ranieli Ferreira de Paula; Daniella Moreira Pinto; Eric Batista Ferreira; Roberta Hilsdorf Piccoli; Eduardo Valério de Barros Vilas Boas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.