Evaluación de los constituyentes fenólicos y del potencial antioxidante de los granos de café verde de la Meseta de Conquista (Bahía) mediante análisis multivariante

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i15.22735

Palabras clave:

Análisis de Alimentos; Compuestos Bioactivos; Control de Calidad; Quimiometría.

Resumen

La composición química y la bioactividad del café verde están influidas por factores intrínsecos y extrínsecos. El grano de café es una rica fuente de compuestos bioactivos, como los compuestos fenólicos, los alcaloides y muchos compuestos con propiedades antioxidantes y antiinflamatorias. Estas características han suscitado numerosos estudios sobre su composición química y, en consecuencia, se han atribuido numerosas ventajas e inconvenientes para la salud humana. Este estudio tuvo como objetivo cuantificar los constituyentes fenólicos totales y analizar la actividad antioxidante in vitro del café verde de la región de la Meseta de Conquista, Bahía, Brasil, y separarlos según su potencial antioxidante. Se determinó el contenido fenólico total (CFT) y se investigó la evaluación del potencial antioxidante in vitro por los métodos de barrido de radicales DPPH y por el método de co-oxidación del sistema β-caroteno: ácido linoleico (BCLA). Se aplicó el análisis de componentes principales (PCA) para revelar qué muestras mostraban un mayor y menor potencial antioxidante. Los resultados mostraron que las muestras presentaron un contenido moderado de constituyentes fenólicos totales 27,02 mg. g-1 de muestra, una baja actividad antioxidante primaria con el valor medio de 65,17 EC50 mg. g-1 de la muestra y una actividad antioxidante secundaria moderada con 44% de protección frente a la oxidación de las moléculas de β-caroteno presentes, inhibiendo moderadamente las condiciones favorables a la oxidación que se insertaron durante el análisis. El análisis de componentes principales fue eficiente en la separación y clasificación de las muestras de café verde, permitiendo observar la dispersión y heterogeneidad entre las muestras, demostrando diferentes perfiles de composición y bioactividad.

Citas

Abrahão, S. A., Pereira, R, G, F., Duarte, S. M. S., Lima, A. R., Alvarenga., D. J. & Ferreira, E. B (2010). Coffee (Coffea arabica L.) bioactive compounds and antioxidant activity. Ciência Agrotecnologia, 34 (2), 414-420.

Amarowicz, R. & Pegg, R. B (2019). Natural antioxidants of plant origin. Advances in Food and Nutrition Research, 90 (1), 1-81.

Brainer, M. S. C. P. Produção de café. (2020). Escritório Técnico de Estudos Econômicos do Nordeste – ETENE, Ano 5, 138.

Brand-Williams, W., Cuvelier, M. E. & Berset, C (1995). Use of a free radical method to evaluate antioxidant activity. LWT: Food Science and Technology, 28, 25-30.

Cheong, M. W., Tong, K. H., Ong, J. J. M., Liu, S. Q., Curran, P. & Yu, B (2012). Volatile composition and antioxidant capacity of Arabica coffee. Food Research International, 51 (1), 388-396.

Cloete, K. J., Smit, Z., Minnis-Ndimba, R., Vavpetic, P., Plessis, A., Roux, S. G. & Pelicon, P (2019). Physico-elemental analysis of roasted organic coffee beans from Ethiopia, Colombia, Honduras, and Mexico using X-ray micro-computed tomography and external beam particle induced X-ray emission. Food Chemistry, 2, 1-8.

Costa, A. S. G., Alves, R. C., Vinha, A. F., Barreira, S. V. P., Nunes, M. A., Cunha, L. M. & Oliveira, M. B. P. P (2014). Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Industrial Crops and Products, 53, 350-357.

Dong, W., Chen, Q., Wei, C., Hu, R., Long, Y., Zong, Y. & ChU, Z (2021). Comparison of the effect of extraction methods on the quality of green coffee oil from Arabica coffee beans: Lipid yield, fatty acid composition, bioactive components, and antioxidant activity. Ultrasonics Sonochemistry, 74, 1-10.

Dong, W., Hu, R., Chu, Z., Zhao, J. & Tan, L (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234, 121-130.

Esquivel, P. & Jiménez, V.M (2012). Functional Properties of Coffee and Coffee By-Products. Food Research International, 46, 488-495.

Farah, A. & Donangel, C. M (2006). Phenolic compounds in coffee. Brazilian Journal of Plant Physiology, 18, 23-26.

Günther, H. (2006). Qualitative Research Versus Quantitative Research: Is that Really the Question? Psicologia: Teoria e Pesquisa, 22 (2), 201-210.

Harumi, K. M.A. & Katsunori, I (2012). Is coffee the next red wine coffee polyphenol and cholesterol efflux. Coffee: Emerging health effects and disease prevention, 59, 227-231.

International Coffee Organization (ICO). Coffee Market Report. (2019).

Kim, W., Kim, S-Y, Kim, D-O., Kim, B-Y. & Baik, M-Y (2018). Puffing, a novel coffee bean processing technique for the enhancement of extract yield and antioxidant capacity. Food Chemistry, 240, 594-600.

Kraljic, K., Barisic, L., Kovacevic, M., Obranovic, M. & Jurcevic, I (2015). Changes in 4-vinylsyringol and other phenolics during rapeseed oil refining. Food Chemistry, 187, 236-242.

Król, K., Gantner, M., Tatarak, A. & E. Hallmann, E (2020). The content of polyphenols in coffee beans as roasting, origin and storage effect. European Food Research and Technology, 246, 33-39.

Kulapichitr, F., Borompichaichartkul, C., Fang, M., Suppavorasatit, I. & Cadwalladerc, K. R (2022). Effect of post-harvest drying process on chlorogenic acids, antioxidant activities and CIE-Lab color of Thai Arabica green coffee beans. Food Chemistry, 366, 1-8.

Liang, N. & Kitts, D (2016). Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients, 8, 1-20.

Lucci, P, Pacetti, D. & Frega, N. G (2015). Phytonutrient concentration and unsaturation of glycerides predict optimal harvest time for Elaeis oleifera × E. guineensis palm oil hybrids. European Journal of Lipid Science and Technology, 117, 7, 1027-1036.

Mehaya, F. M. & Mohammad, A. A (2020). Thermostability of bioactive compounds during roasting process of coffee beans. Heliyon, 6, 1-7.

Miller, H. E. A (1971). Simplified Method for the Evaluation of Antioxidants. Journal of the American Oil Chemists Society, 48, 2, 91.

Mingoti, S. A (2005). Análise de dados através de métodos de estatística multivariada: Uma abordagem aplicada. Belo Horizonte.

Moon, J. K., Yoo, H. S. & Shibamoto, T (2009). Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity. Food Chemistry, 57, 5365-5369.

Moreira, A. S. P., Coimbra, M. A., Nunes, F. M., Passos, C. P. & Santos, S.A.O. (2015). Chlorogenic acid–arabinose hybrid domains in coffee melanoidins: evidences from a model system. Food Chemistry, 185, 135-144.

Murthy, P. S., Manjunatha, M. R., Sulochannama, G. & Naidu, M (2012). Extraction, characterization and bioactivity of coffee anthocyanins. European Journal of Biological Sciences, 4 (1),13-19.

Oliveira, E. R., Silva, R. F., Santos, P. R., Santos, P. R. & Queiroz, F (2019). Potential of alternative solvents to extract biologically active compounds from green coffee beans and its residue from the oil industry. Food and Bioproducts Processing, 115, 47-58.

Oliveira G. H. H., Corrêa P. C., Santos F. L., Vasconcelos, W. L., Júnior C. C., Baptestini F. M. & Vargas-Elías G. A. (2014). Physical characterization of coffee after roasting and grinding. Semina: Ciências Agrárias, Londrina, 35 (4), 1813-1828.

doi: 10.5433/1679-0359.2014v35n4p1813

Paiva, B., Beserra, C., Reis, J.G., Dorea, T. & Da Costa, A. A (2019). Amato Consumption of coffee or caffeine and serum concentration of inflammatory markers: A systematic review. Critical Reviews in Food Science and Nutrition, 59, 652-663.

Scalbert, A., Johnson, I. T. & Saltmarsh, M (2005). Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 87, 215-217.

Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M (1998). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178.

Sokmen, M., Serkedjieva, j., Daferera, D., Gulluce, M., Polissiou, M., Tepe, B., Akpulat, H. A., Sahin, F. & Sokmen, A (2004). In Vitro Antioxidant, Antimicrobial, and Antiviral Activities of the Essential Oil and Various Extracts from Herbal Parts and Callus Cultures of Origanum acutidens. Journal of Agricultural and Food Chemistry, 52 (11), 3309–3312.

Somporn, C., Kamtuo, A., Theerakulpisut, P. & Siriamornpun, S (2011). Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of Arabica coffee beans (Coffea arabica L. cv. Catimor). International Journal of Food Science and Technology, 46, 2287-2296.

Statistical Analysis System (SAS), University Edition, SAS Institute Inc., USA, 2021.

Stelmach, E., Pohl, P. & Szymczycha-Madeja, A (2015). The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews. Food Chemistry, 182, 302- 308.

Świeca, M., Gawlik-Dziki, U., Dziki, D. & Baraniak, B. (2017). Wheat bread enriched with green coffee – in vitro bioaccessibility and bioavailability of phenolics and antioxidant activity. Food Chemistry, 221,1451–1457. 10.1016/j.foodchem.2016.11.006.

Zhu, M., Long, Y., Ma, Y., Chen, Y., Yu, Q., Xie, J., Li, B. & Tian, J (2021). Comparison of chemical and fatty acid composition of green coffee bean (Coffea arabica L.) from different geographical origins. LWT: Food Science and Technology, 140, 1-9.

Descargas

Publicado

24/11/2021

Cómo citar

OLIVEIRA, T. de F.; ROCHA, R. de S. da; BATISTA, A. S.; PINTO, S. N. G.; SANTOS , L. S. Evaluación de los constituyentes fenólicos y del potencial antioxidante de los granos de café verde de la Meseta de Conquista (Bahía) mediante análisis multivariante. Research, Society and Development, [S. l.], v. 10, n. 15, p. e171101522735, 2021. DOI: 10.33448/rsd-v10i15.22735. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22735. Acesso em: 8 ene. 2025.

Número

Sección

Ciencias Agrarias y Biológicas