Computación afectiva en el contexto de la musicoterapia: una revisión sistemática
DOI:
https://doi.org/10.33448/rsd-v10i15.22844Palabras clave:
Computación afectiva; Reconocimiento de emociones; Estimulacíon acústica; Sistema de recomendación; Musicoterapia.Resumen
La musicoterapia es una herramienta eficaz para ralentizar el progreso de la demencia, ya que la interacción con la música puede evocar emociones que estimulan las áreas del cerebro responsables de la memoria. Esta terapia tiene más éxito cuando el terapeuta proporciona estímulos adecuados y personalizados para cada paciente. Esta personalización suele ser difícil. Por lo tanto, los métodos de Inteligencia Artificial (IA) pueden ayudar en esta tarea. Este artículo trae una revisión sistemática de la literatura en el campo de la computación afectiva en el contexto de la terapia musical. En particular, nuestro objetivo es evaluar los métodos de inteligencia artificial para realizar el reconocimiento automático de emociones aplicado a las interfaces musicales hombre-máquina (HMMI). Para realizar la revisión, realizamos una búsqueda automática en cinco de las principales bases de datos científicas en los campos de la computación inteligente, la ingeniería y la medicina. Buscamos todos los artículos publicados entre 2016 y 2020, cuyos metadatos, título o resumen contengan los términos definidos en la cadena de búsqueda. El protocolo de revisión sistemática resultó en la inclusión de 144 trabajos de las 290 publicaciones devueltas de la búsqueda. A través de esta revisión del estado del arte, fue posible enumerar los desafíos actuales en el reconocimiento automático de emociones. También fue posible darse cuenta del potencial del reconocimiento automático de emociones para construir soluciones de asistencia no invasivas basadas en interfaces musicales hombre-máquina, así como las técnicas de inteligencia artificial que se utilizan en el reconocimiento de emociones a partir de datos multimodal. Por lo tanto, el aprendizaje automático para el reconocimiento de emociones a partir de diferentes fuentes de datos puede ser un enfoque importante para optimizar los objetivos clínicos que se deben lograr a través de la musicoterapia.
Citas
Agres, K. R., Schaefer, R. S., Volk, A., Hooren, S. v., Holzapfel, A., Bella, S. D., ... Magee, W. L. (2021). Music, Computing, and Health: A Roadmap for the Current and Future Roles of Music Technology for Health Care and Well-Being . Music & Science, 4, 1–32. doi: 10.1177/2059204321997709
Al-Qazzaz, N. K., Sabir, M. K., Ali, S. H. B. M., Ahmad, S. A., & Grammer, K. (2020). Electroencephalogram Profiles for Emotion Identification over the Brain Regions Using Spectral, Entropy and Temporal Biomarkers. Sensors(Basel), 20. doi:10.3390/s20010059
Amali, D. N., Barakbah, A. R., Anom Besari, A. R., & Agata, D. (2018). Semantic Video Recommendation System Based on Video Viewers Impression from Emotion Detection. In 2018 international electronics symposium on knowledge creation and intelligent computing (ies-kcic) (p. 176-183). doi: 10.1109/KCIC.2018.8628592
Aranha, R. V., Silva, L. S., Chaim, M. L., & Nunes, F. d. L. d. S. (2017). Using Affective Computing to Automatically Adapt Serious Games for Rehabilitation. In 2017 ieee 30th international symposium on computer-based medical systems (cbms) (p. 55-60). doi: 10.1109/CBMS.2017.89
Arroyo-Palacios, J., & Slater, M. (2016). Dancing with Physio: A Mobile Game with Physiologically Aware Virtual Humans. IEEE Transactions on Affective Computing, 7(4), 326-336. doi: 10.1109/TAFFC.2015.2472013
Aydın, S. (2020). Deep Learning Classification of Neuro-Emotional Phase Domain Complexity Levels Induced by Affective Video Film Clips. IEEE Journal of Biomedical and Health Informatics, 24(6), 1695-1702. doi: 10.1109/JBHI.2019.2959843
Bakhtiyari, K., Taghavi, M., Taghavi, M., & Bentahar, J. (2019). Ambiance Signal Processing: A Study on Collaborative Affective Computing. In 2019 5th international conference on web research (icwr) (p. 35-40). doi: 10.1109/ICWR.2019.8765251
Bankar, C., Bhide, A., Kulkarni, A., Ghube, C., & Bedekar, M. (2018). Driving Control Using Emotion Analysis Via EEG. In 2018 ieee punecon (p. 1-7). doi: 10.1109/PUNECON.2018.8745412
Barnstaple, R., Protzak, J., DeSouza, J. F., & Gramann, K. (2020). Mobile brain/body imaging in dance: A dynamic transdisciplinary field for applied research. European Journal of Neuroscience. doi: https://doi.org/10.1111/ejn.14866
Bermúdez i Badia, S., Quintero, L. V., Cameirão, M. S., Chirico, A., Triberti, S., Cipresso, P., & Gaggioli, A. (2019). Toward emotionally adaptive virtual reality for mental health applications. IEEE Journal of Biomedical and Health Informatics, 23(5), 1877-1887. doi: 10.1109/JBHI.2018.2878846
Bertazone, T. M. A., Ducatti, M., Camargo, H. P. M., Batista, J. M. F., Kusumota, L., & Marques, S. (2016). Ações multidisciplinares/interdisciplinares no cuidado ao idoso com Doença de Alzheimer. Rev Rene.
Bhargava, A., O’Shaughnessy, K., & Mann, S. (2020). A novel approach to eeg neurofeedback via reinforcement learning. In 2020 ieee sensors (p. 1-4). doi: 10.1109/SENSORS47125.2020.9278871
Bo, H., Ma, L., & Li, H. (2017). Music-evoked emotion classification using EEG correlation-based information. In 2017 39th annual international conference of the ieee engineering in medicine and biology society (embc) (p. 3348-3351). doi: 10.1109/EMBC.2017.8037573
Bortz, B., Jaimovich, J., & Knapp, R. B. (2019). Cross-Cultural Comparisons of Affect and Electrodermal Measures While Listening to Music. In 2019 8th international conference on affective computing and intelligent interaction (acii) (p. 55-61). doi: 10.1109/ACII.2019.8925476
Boumpa, E., Charalampou, I., Gkogkidis, A., Ntaliani, A., Kokkinou, E., & Kakarountas, A. (2018). Assistive System for Elders Suffering of Dementia. In 2018 ieee 8th international conference on consumer electronics - berlin (icce-berlin) (p. 1-4). doi: 10.1109/ICCE-Berlin.2018.8576216
Brosch, T., Scherer, K. R., Grandjean, D. M., & Sander, D. (2013). The impact of emotion on perception, attention, memory, and decision-making. Swiss Medical Weekly, 143. doi: 10.4414/smw.2013.13786
Bulagang, A. F., Mountstephens, J., & Teo, J. (2021). Multiclass emotion prediction using heart rate and virtual reality stimuli. Journal of Big Data, 12. doi: 10.1186/s40537-020-00401-x
Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. 1st Conference on Fairness, Accountability and Transparency, 77-91.
Caetano, L. A. O., Silva, F. S., & Silveira, C. A. B. (2017). Alzheimer, sintomas e Grupos: Uma Revisão Integrativa. Revista do NESME.
Cambria, E. (2016). Affective computing and sentiment analysis. IEEE Intelligent Systems, 31(2), 102–107.
Cameirão, M. S., Pereira, F., & i. Badia, S. B. (2017). Virtual reality with customized positive stimuli in a cognitive-motor rehabilitation task. In 2017 international conference on virtual rehabilitation (icvr) (p. 1-7). doi: 10.1109/ICVR.2017.8007543
Cavallo, F., Rovini, E., Dolciotti, C., Radi, L., Ragione, R. D., Bongioanni, P., & Fiorini, L. (2020). Physiological response to Vibro-Acoustic stimulation in healthy subjects: a preliminary study*. In 2020 42nd annual international conference of the ieee engineering in medicine biology society (embc) (p. 5921-5924). doi: 10.1109/EMBC44109.2020.9175848
Chang, H.-Y., Huang, S.-C., & Wu, J.-H. (2017). A personalized music recommendation system based on electroencephalography feedback. Multimedia Tools and Applications, 76, 19523—19542. doi: 10.1007/s11042-015-3202-4
Chapaneri, S., & Jayaswal, D. (2018). Deep Gaussian Processes for Estimating Music Mood. In 2018 15th ieee india council international conference (indicon) (p. 1-5). doi: 10.1109/INDICON45594.2018.8987036
Chatziagapi, A., Paraskevopoulos, G., Sgouropoulos, D., Pantazopoulos, G., Nikandrou, M., Giannakopoulos, T., ... Narayanan, S. (2019). Data Augmentation using GANs for Speech Emotion Recognition. INTERSPEECH 2019.
Chavan, D. R., Kumbhar, M. S., & Chavan, R. R. (2016). The human stress recognition of brain, using music therapy. In 2016 international conference on computation of power, energy information and commuincation (iccpeic) (p. 200-203). doi: 10.1109/ICCPEIC.2016.7557197
Chen, J., Pan, F., Zhong, P., He, T., Qi, L., Lu, J., ... Zheng, Y. (2020). An Automatic Method to Develop Music With Music Segment and Long Short Term Memory for Tinnitus Music Therapy. IEEE Access, 8, 141860-141871. doi: 10.1109/ ACCESS.2020.3013339
Chen, O. T., Chang, S., Ma, Y., Zhang, Y. C., & Lee, Y. L. (2020). Time capsule gift with affective awareness of event memories via near field communication. In 2020 ieee/sice international symposium on system integration (sii) (p. 585-589). doi: 10.1109/SII46433.2020.9026183
Chennafi, M., Khan, M. A., Li, G., Lian, Y., & Wang, G. (2018). Study of music effect on mental stress relief based on heart rate variability. In 2018 ieee asia pacific conference on circuits and systems (apccas) (p. 131-134). doi: 10.1109/ APCCAS.2018.8605674
Chin, Y.-H., Wang, J.-C., Wang, J.-C., & Yang, Y.-H. (2018). Predicting the Probability Density Function of Music Emotion Using Emotion Space Mapping. IEEE Transactions on Affective Computing, 9(4), 541-549. doi: 10.1109/TAFFC.2016.2628794
Colombo, R., Raglio, A., Panigazzi, M., Mazzone, A., Bazzini, G., Imarisio, C., ... Imbriani, M. (2019). The sonichand protocol for rehabilitation of hand motor function: A validation and feasibility study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(4), 664-672. doi: 10.1109/TNSRE.2019.2905076
Crespo, A. B., Idrovo, G. G., Rodrigues, N., & Pereira, A. (2016). A virtual reality UAV simulation with body area networks to promote the elders life quality. In 2016 1st international conference on technology and innovation in sports, health and wellbeing (tishw) (p. 1-7). doi: 10.1109/TISHW.2016.7847780
Daly, I., Williams, D., Kirke, A., Miranda, E. R., & Nasuto, S. J. (2019). Electroencephalography reflects the activity of subcortical brain regions during approach-withdrawal behaviour while listening to music. Scientific Reports, 9. doi: 10.1038/ s41598-019-45105-2
Daly, I., Williams, D., Kirke, A., Weaver, J., Malik, A., Hwang, F., ... Nasuto, S. J. (2016). Affective brain-computer music interfacing. Journal of Neural Engineering, 13. doi: 10.1088/1741-2560/13/4/046022
Daly, I., Williams, D., Malik, A., Weaver, J., Kirke, A., Hwang, F., ... Nasuto, S. J. (2020). Personalised, Multi-Modal, Affective State Detection for Hybrid Brain-Computer Music Interfacing. IEEE Transactions on Affective Computing, 11(1), 111-124. doi: 10.1109/TAFFC.2018.2801811
Dantcheva, A., Bilinski, P., Nguyen, H. T., Broutart, J.-C., & Bremond, F. (2017). Expression recognition for severely demented patients in music reminiscence-therapy. In 2017 25th european signal processing conference (eusipco) (p. 783-787). doi: 10.23919/EUSIPCO.2017.8081314
Dechenaud, M., Laidig, D., Seel, T., Gilbert, H. B., & Kuznetsov, N. A. (2019). Development of Adapted Guitar to Improve Motor Function After Stroke: Feasibility Study in Young Adults. In Annual international conference of the iee engineering in medicine and biology society (pp. 5488–5493). doi: 10.1109/EMBC.2019.8856651
Delmastro, F., Martino, F. D., & Dolciotti, C. (2018). Physiological Impact of Vibro-Acoustic Therapy on Stress and Emotions through Wearable Sensors. In 2018 ieee international conference on pervasive computing and communications workshops (percom workshops) (p. 621-626). doi: 10.1109/PERCOMW.2018.8480170
Desai, B., Chen, B., Sirocchi, S., & McMullen, K. A. (2018). Mindtrack: Using brain-computer interface to translate emotions into music. In 2018 international conference on digital arts, media and technology (icdamt) (p. 33-37). doi: 10.1109/ ICDAMT.2018.8376491
Deshmukh, R. S., Jagtap, V., & Paygude, S. (2017). Facial emotion recognition system through machine learning approach. In 2017 international conference on intelligent computing and control systems (iciccs) (p. 272-277). doi: 10.1109/ICCONS.2017 .8250725
Souza, M. C., da Rocha Alves, A. B., de Lima, D. S., de Oliveira, L. R. F. A., da Silva, J. K. B., de Oliveira Ribeiro, E. C., ... de Oliveira, e. a., I. D. (2017). The treatment of Alzheimer in the context of musicotherapy. International Archives of Medicine, 10.
Dorneles, S. O., Barbosa, D. N. F., & Barbosa, J. L. V. (2020). Sensibilidade ao contexto na identificação de estados afetivos aplicados à educação: um mapeamento sistemático. Revista Novas Tecnologias na Educação - RENOTE, 18.
Dragulin, S., Constantin, F. A., & Rucsanda, I. (2019). The Use of Music Therapy for Adults’ Anxiety Relief. In˘ 2019 5th experiment international conference (exp.at’19) (p. 490-493). doi: 10.1109/EXPAT.2019.8876558
Dutta, E., Bothra, A., Chaspari, T., Ioerger, T., & Mortazavi, B. J. (2020). Reinforcement learning using eeg signals for therapeutic use of music in emotion management. In 2020 42nd annual international conference of the ieee engineering in medicine biology society (embc) (p. 5553-5556). doi: 10.1109/EMBC44109.2020.9175586
EC. (2020). The 2021 Ageing Report: Underlying Assumptions and Projection Methodologies [Computer software manual]. Retrieved from https://ec.europa.eu/info/sites/default/files/economy-finance/ip142_en .pdf (Last accessed: 2021 Jul. 05)
Ehrlich, S., Guan, C., & Cheng, G. (2017). A closed-loop brain-computer music interface for continuous affective interaction. In 2017 international conference on orange technologies (icot) (p. 176-179). doi: 10.1109/ICOT.2017.8336116
Ehrlich, S. K., Agres, K. R., Guan, C., & Cheng, G. (2019, 03). A closed-loop, music-based brain-computer interface for emotion mediation. PLOS ONE, 14(3), 1-24. Retrieved from https://doi.org/10.1371/journal.pone.0213516 doi:10.1371/journal.pone.0213516
Ekman, P., & Friesen, V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 124-–129.
English, B. A., & Howard, A. (2017a). The effects of adjusting task difficulty on learning motor and cognitive aspects of a multitasking task. In 2017 ieee symposium series on computational intelligence (ssci) (p. 1-7). doi: 10.1109/SSCI.2017.8285396
English, B. A., & Howard, A. M. (2017b). The effects of musical cues on motor learning using a robotic wrist rehabilitation system — a healthy pilot study. In 2017 ieee workshop on advanced robotics and its social impacts (arso) (p. 1-6). doi: 10.1109/ARSO.2017.8025208
Fang, R., Ye, S., Huangfu, J., & Calimag, D. P. (2017). Music therapy is a potential intervention for cognition of Alzheimer’s disease: a mini-review. Translational Neurodegeneration, 6(1), 2.
Fernandes, C. M., Migotina, D., & Rosa, A. C. (2021). Brain’s Night Symphony (BraiNSy): A Methodology for EEG Sonification. IEEE Transactions on Affective Computing, 12(1), 103-112. doi: 10.1109/TAFFC.2018.2850008
Fonteles, J. H., Serpa, Y. R., Barbosa, R. G., Rodrigues, M. A. F., & Alves, M. S. P. L. (2018). Gesture-controlled interactive musical game to practice hand therapy exercises and learn rhythm and melodic structures. In 2018 ieee 6th international conference on serious games and applications for health (segah) (p. 1-8). doi: 10.1109/SeGAH.2018.8401367
Gallego, M. G., & Garcia, J. G. (2017). Music therapy and Alzheimer’s disease: Cognitive, psychological, and behavioural effects. Neurología (English Edition), 32(5), 300–308. doi: 10.1155/2014/908915
Geethanjali, B., Adalarasu, K., Jagannath, M., & Guhan Seshadri, N. P. (2019). Music-Induced Brain Functional Connectivity Using EEG Sensors: A Study on Indian Music. IEEE Sensors Journal, 19(4), 1499-1507. doi: 10.1109/JSEN.2018.2873402
Geraets, C. N., Stouwe, E. C. d., Pot-Kolder, R., & Veling, W. (2021). Advances in immersive virtual reality interventions for mental disorders: A new reality? Current Opinion in Psychology, 41, 40–45. doi: 10.1016/j.copsyc.2021.02.004
Gilda, S., Zafar, H., Soni, C., & Waghurdekar, K. (2017). Smart music player integrating facial emotion recognition and music mood recommendation. In 2017 international conference on wireless communications, signal processing and networking (wispnet) (p. 154-158). doi: 10.1109/WiSPNET.2017.8299738
González, E. J. S., & McMullen, K. (2020). The design of an algorithmic modal music platform for eliciting and detecting emotion. In 2020 8th international winter conference on brain-computer interface (bci) (p. 1-3). doi: 10.1109/BCI48061 .2020.9061664
Goudbeek, M., Goldman, J. P., & Scherer, K. R. (2009). Emotion dimensions and formant position. INTERSPEECH 2009Annual Conference of the International Speech Communication Association.
Goyal, A., Kumar, N., Guha, T., & Narayanan, S. S. (2016). A multimodal mixture-of-experts model for dynamic emotion prediction in movies. In 2016 ieee international conference on acoustics, speech and signal processing (icassp) (p. 28222826). doi: 10.1109/ICASSP.2016.7472192
Greer, T., Mundnich, K., Sachs, M., & Narayanan, S. (2020). The Role of Annotation Fusion Methods in the Study of HumanReported Emotion Experience During Music Listening. In Icassp 2020 - 2020 ieee international conference on acoustics, speech and signal processing (icassp) (p. 776-780). doi: 10.1109/ICASSP40776.2020.9054329
Gu, F., Niu, J., Das, S. K., & He, Z. (2018). RunnerPal: A Runner Monitoring and Advisory System Based on Smart Devices. IEEE Transactions on Services Computing, 11(2), 262-276. doi: 10.1109/TSC.2016.2626372
Hamdan, A. C. (2008). Avaliação neuropsicológica na doença de alzheimer e no comprometimento cognitivo leve. Psicol. argum, 183–192.
Han, W., & Chan, C. (2006). An efficient MFCC extraction method in speech recognition. International Symposium on Circuits and Systems.
Han, Y., Nishio, Y., Yi-Hsiang, M., Oshiyama, C., Lin, J.-Y., Takanishi, A., & Cosentino, S. (2018). A humanrobot interface to improve facial expression recognition in subjects with autism spectrum disorder. In 2018 9th international conference on awareness science and technology (icast) (p. 179-184). doi: 10.1109/ICAwST.2018.8517228
Hasan, S. M. S., Siddiquee, M. R., Marquez, J. S., & Bai, O. (2020). Enhancement of Movement Intention Detection Using EEG Signals Responsive to Emotional Music Stimulus. IEEE Transactions on Affective Computing, 1-1. doi: 10.1109/ TAFFC.2020.3025004
Herremans, D., & Chew, E. (2019). MorpheuS: Generating Structured Music with Constrained Patterns and Tension. IEEE Transactions on Affective Computing, 10(4), 510-523. doi: 10.1109/TAFFC.2017.2737984
Hossan, A., & Chowdhury, A. M. M. (2016). Real time EEG based automatic brainwave regulation by music. In 2016 5th international conference on informatics, electronics and vision (iciev) (p. 780-784). doi: 10.1109/ICIEV.2016.7760107
Hsu, Y.-L., Wang, J.-S., Chiang, W.-C., & Hung, C.-H. (2020). Automatic ECG-Based Emotion Recognition in Music Listening. IEEE Transactions on Affective Computing, 11(1), 85-99. doi: 10.1109/TAFFC.2017.2781732
Huang, W., & Benjamin Knapp, R. (2017). An exploratory study of population differences based on massive database of physiological responses to music. In 2017 seventh international conference on affective computing and intelligent interaction (acii) (p. 524-530). doi: 10.1109/ACII.2017.8273649
Ibrahim, I. A., Ting, H.-N., & Moghavvemi, M. (2019). Formulation of a Novel Classification Indices for Classification of Human Hearing Abilities According to Cortical Auditory Event Potential signals. Arabian Journal for Science and Engineering, 44, 7133–7147. doi: 10.1007/s13369-019-03835-5
Ingale, A. B., & Chaudhari, D. S. (2012). Speech Emotion Recognition. International Journal of Soft Computing and Engineering, 2.
Izard, C. E. (1977). Human Emotions. New York: Springer.
Jagiello, R., Pomper, U., Yoneya, M., Zhao, S., & Chait, M. (2019). Rapid Brain Responses to Familiar vs. Unfamiliar Music – an EEG and Pupillometry study. Scientifics Reports, 9. doi: 10.1038/s41598-019-51759-9
Jeong, M., & Ko, B. C. (2018). Driver’s Facial Expression Recognition in Real-Time for Safe Driving. Sensors. doi: 10.3390/ s18124270
Kanehira, R., Ito, Y., Suzuki, M., & Hideo, F. (2018). Enhanced relaxation effect of music therapy with VR. In 2018 14th international conference on natural computation, fuzzy systems and knowledge discovery (icnc-fskd) (p. 1374-1378). doi: 10.1109/FSKD.2018.8686951
Kikuchi, T., Nagata, T., Sato, C., Abe, I., Inoue, A., Kugimiya, S., ... Hatabe, S. (2018). Sensibility Assessment For User Interface and Training Program an Upper-Limb Rehabilitation Robot, D-SEMUL. In Annual international conference of the ieee engineering in medicine and biology society (pp. 3028–3031). doi: 10.1109/EMBC.2018.8513074
King, J., Jones, K., Goldberg, E., Rollins, M., MacNamee, K., Moffit, C., ... Amaro, e. a., J. (2019). Increased functional connectivity after listening to favored music in adults with Alzheimer dementia. The Journal of Prevention of Alzheimer’s Disease, 6(1), 56–62.
Kirana, M. C., Lubis, M. Z., & Amalia, E. D. (2018). The effect of sound manipulation to know response rate in autism children using fft. In 2018 international conference on applied engineering (icae) (p. 1-5). doi: 10.1109/INCAE.2018.8579418
Kobayashi, A., & Fujishiro, I. (2016). An Affective Video Generation System Supporting Impromptu Musical Performance. In 2016 international conference on cyberworlds (cw) (p. 17-24). doi: 10.1109/CW.2016.11
Konno, M., Suzuki, K., & Sakamoto, M. (2018). Sentence Generation System Using Affective Image. In 2018 joint 10th international conference on soft computing and intelligent systems (scis) and 19th international symposium on advanced intelligent systems (isis) (p. 678-682). doi: 10.1109/SCIS-ISIS.2018.00114
Krüger, C., Kojic, T., Meier, L., Möller, S., & Voigt-Antons, J.-N. (2020). Development and validation of pictographic scales´ for rapid assessment of affective states in virtual reality. In 2020 twelfth international conference on quality of multimedia experience (qomex) (p. 1-6). doi: 10.1109/QoMEX48832.2020.9123100
Kumar, N., Guha, T., Huang, C., Vaz, C., & Narayanan, S. S. (2016). Novel affective features for multiscale prediction of emotion in music. In 2016 ieee 18th international workshop on multimedia signal processing (mmsp) (p. 1-5). doi: 10.1109/MMSP.2016.7813377
Kyong, J.-S., Noh, T.-S., Park, M., Oh, S.-H., Lee, J., & Suh, M.-W. (2019, 06). Phantom Perception of Sound and the Abnormal Cortical Inhibition System: An Electroencephalography (EEG) Study. Annals of Otology, Rhinology & Laryngology, 128, 84S-95S. doi: 10.1177/0003489419837990
Le, D., & Provost, E. M. (2013). Emotion recognition from spontaneous speech using hidden markov models with deep belief networks. IEEE Workshop on Automatic Speech Recognition and Understanding, 216—221.
Leslie, G., Ghandeharioum, A., Zhou, D., & Picard, R. W. (2019). Engineering Music to Slow Breathing and Invite Relaxd Physiology. In 2019 8th international conference on affective computing and intelligent interaction (acii) (Vol. abs/1907.08844, pp. 276–282).
Li, Q., Wang, X., Wang, S., Xie, Y., Xie, Y., & Li, S. (2020). More flexible integration of functional systems after musical training in young adults. IEEE Transactions on Neural Systems an Heabilitation Engineering, 28.
Li, X., Zhao, Z., Song, D., Zhang, Y., Pan, J., Wu, L., ... Wang, D. (2020). Latent factor decoding of multi-channel eeg for emotion recognition through autoencoder-like neural networks. Frontiers in Neuroscience, 14, 87. Retrieved from https:// www.frontiersin.org/article/10.3389/fnins.2020.00087 doi: 10.3389/fnins.2020.00087
Liao, C.-Y., Chen, R.-C., Tai, S.-K., & Hendry. (2017). Using single point brain wave instrument to explore and verification of music frequency. In 2017 international conference on innovative and creative information technology (icitech) (p. 1-6). doi: 10.1109/INNOCIT.2017.8319142
Lin, X., Mahmud, S., Jones, E., Shaker, A., Miskinis, A., Kanan, S., & Kim, J.-H. (2020). Virtual Reality-Based Musical Therapy for Mental Health Management. In 2020 10th annual computing and communication workshop and conference (ccwc) (p. 0948-0952). doi: 10.1109/CCWC47524.2020.9031157
LingHu, Y.-f., & Shu, H. (2018). ARM-Based Feedback System For Athletes’ Psychological Adjustment. In 2018 17th international symposium on distributed computing and applications for business engineering and science (dcabes) (p. 72-75). doi: 10.1109/DCABES.2018.00028
Liu, W., Zhang, C., Wang, X., Xu, J., Chang, Y., Ristaniemi, T., & Cong, F. (2020). Functional connectivity of major depression disorder using ongoing eeg during music perception. Clinical Neurophysiology, 131(10), 2413-2422. doi: https://doi.org/ 10.1016/j.clinph.2020.06.031
Lopes, P., Liapis, A., & Yannakakis, G. N. (2019). Modelling Affect for Horror Soundscapes. IEEE Transactions on Affective Computing, 10(2), 209-222. doi: 10.1109/TAFFC.2017.2695460
Lourinho, B. B. A. S., & Ramos, W. F. (2019). O envelhecimento, o cuidado com o idoso e a doença de alzheimer. enciclopédia biosfera, 723.
Lubetzky, A. V., Kelly, J., Wang, Z., TaghaviDilamani, M., Gospodarek, M., Fu, G., ... Hujsak, B. (2019). Head Mounted Display Application for Contextual Sensory Integration Training: Design, Implementation, Challenges and Patient Outcomes. In 2019 international conference on virtual rehabilitation (icvr) (p. 1-7). doi: 10.1109/ICVR46560.2019.8994437
Lui, J. H., Samani, H., & Tien, K.-Y. (2017). An affective mood booster robot based on emotional processing unit. In 2017 international automatic control conference (cacs) (p. 1-6). doi: 10.1109/CACS.2017.8284239
Lui, S., & Grunberg, D. (2017). Using skin conductance to evaluate the effect of music silence to relieve and intensify arousal. In 2017 international conference on orange technologies (icot) (p. 91-94). doi: 10.1109/ICOT.2017.8336096
Lv, C., Li, S., & Huang, L. (2018). Music Emotions Recognition Based on Feature Analysis. In 2018 11th international congress on image and signal processing, biomedical engineering and informatics (cisp-bmei) (p. 1-5). doi: 10.1109/CISP-BMEI.2018.8633223
Lyu, M.-J., & Yuan, S.-M. (2020). Cloud-Based Smart Dog Music Therapy and Pneumonia Detection System for Reducing the Difficulty of Caring for Patients With Dementia. IEEE Access, 8, 20977-20990. doi: 10.1109/ACCESS.2020.2969482
Malheiro, R., Panda, R., Gomes, P., & Paiva, R. P. (2018). Emotionally-relevant features for classification and regression of music lyrics. IEEE Transactions on Affective Computing, 9(2), 240-254. doi: 10.1109/TAFFC.2016.2598569
Marimpis, A. D., Dimitriadis, S. I., & Goebel, R. (2020). A multiplex connectivity map of valence-arousal emotional model. IEEE Access, 8, 170928-170938. doi: 10.1109/ACCESS.2020.3025370
Marosi-Holczberger, E., Prieto-Corona, D. M. B., Yáñez-Téllez, M. G., Rodríguez-Camacho, M. A., Rodríguez-Camacho, H., & Guerrero-Juarez, V. (2013). Quantitative Spectral EEG Assessments During Affective States Evoked By The Presentation Of The International Affective Pictures. Journal of Behavior, Health & Social Issues, 14.
Matsumoto, K., & Sasayama, M. (2018). Lyric Emotion Estimation Using Word Embedding Learned from Lyric Corpus. In 2018 ieee 4th international conference on computer and communications (iccc) (p. 2295-2301). doi: 10.1109/CompComm.2018.8780811
Mehta, D., Siddiqui, M. F. H., & Javaid, A. (2019, 04). Recognition of emotion intensities using machine learning algorithms: A comparative study. Sensors, 19. doi: 10.3390/s19081897
Meska, M. H. G., Mano, L. Y., Silva, J. P., Junior, G. A. P., & Mazzo, A. (2020). Reconhecimento de emoções para ambiente clínico simulado com uso de odores desagradáveis: estudo quase experimental. Revista Latino-A / Enfermagem, 8.
Mideska, K. G., Singh, A., Hoogenboom, N., Hellriegel, H., Krause, H., Schnitzler, A., ... Muthuraman, M. (2016). Comparison of imaging modalities and source-localization algorithms in locating the induced activity during deep brain stimulation of the STN. In Annual international conference of the ieee engineering in medicine and biology society (pp. 105–108). doi: 10.1109/EMBC.2016.7590651
Mitrpanont, J., Phandhu-fung, J., Klubdee, N., Ratanalaor, S., Pratiphakorn, P., Damrongvanakul, K., ... Mitrpanont, T. (2017). iCare-Stress: Caring system for stress. In 2017 6th ict international student project conference (ict-ispc) (p. 1-4). doi: 10.1109/ICT-ISPC.2017.8075319
Mo, S., & Niu, J. (2019). A novel method based on ompgw method for feature extraction in automatic music mood classification. IEEE Transactions on Affective Computing, 10(3), 313-324. doi: 10.1109/TAFFC.2017.2724515
Mulla, F., Eya, E., Ibrahim, E., Alhaddad, A., Qahwaji, R., & Abd-Alhameed, R. (2017). Neurological assessment of music therapy on the brain using Emotiv Epoc. In 2017 internet technologies and applications (ita) (p. 259-263). doi: 10.1109/ ITECHA.2017.8101950
Murad, D., Ye, F., Barone, M., & Wang, Y. (2017). Motion initiated music ensemble with sensors for motor rehabilitation. In 2017 international conference on orange technologies (icot) (p. 87-90). doi: 10.1109/ICOT.2017.8336095
Nalepa, G. J., Kutt, K., & Bobek, S. (2019). Mobile platform for affective context-aware systems. Future Generation Computer Systems, 92, 490-503. Retrieved from https://www.sciencedirect.com/science/article/pii/ S0167739X17312207 doi: https://doi.org/10.1016/j.future.2018.02.033
Navarathna, R., Carr, P., Lucey, P., & Matthews, I. (2019). Estimating audience engagement to predict movie ratings. IEEE Transactions on Affective Computing, 10(1), 48-59. doi: 10.1109/TAFFC.2017.2723011
Navarro-Tuch, S. A., Solís-Torres, R., Bustamante-Bello, R., López-Aguilar, A. A., González-Archundia, G., & HernándezGonzález, O. (2018). Variation of facial expression produced by acoustic stimuli. In 2018 international conference on mechatronics, electronics and automotive engineering (icmeae) (p. 60-64). doi: 10.1109/ICMEAE.2018.00018
Nawa, N. E., Callan, D. E., Mokhtari, P., Ando, H., & Iversen, J. (2018). Decoding music-induced experienced emotions using functional magnetic resonance imaging - Preliminary results. In 2018 international joint conference on neural networks (ijcnn) (p. 1-7). doi: 10.1109/IJCNN.2018.8489752
Nemati, S., & Naghsh-Nilchi, A. R. (2017). Exploiting evidential theory in the fusion of textual, audio, and visual modalities for affective music video retrieval. In 2017 3rd international conference on pattern recognition and image analysis (ipria) (p. 222-228). doi: 10.1109/PRIA.2017.7983051
Nichols, E., Szoeke, C. E., Vollset, S., Abbasi, N., Abd-Allah, F., Abdela, J., ... Barker-Collo, S. e. a. (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18, P88–106. doi: 10.1016/S1474-4422(18)30403-4
NRC. (2001). Preparing for an Aging World: The Case for Cross-National Research [Computer software manual]. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK98375/ (Last accessed: 2021 Jul. 05)
Oliveira, E., & Jaques, P. A. (2013). Classificação de emoções básicas através de imagens capturadas em vídeos de baixa resolução. Revista Brasileira de Computação Aplicada, 5, 40–54.
Ortegon-Sarmiento, T., Penuela, L., & Uribe-Quevedo, A. (2020). Low Back Pain Attenuation Employing Virtual Reality Physiotherapy. In 2020 22nd symposium on virtual and augmented reality (svr) (p. 169-173). doi: 10.1109/SVR51698.2020 .00037
O’Toole, P., Glowinski, D., & Mancini, M. (2019). Understanding chromaesthesia by strengthening auditory -visual-emotional associations. In 2019 8th international conference on affective computing and intelligent interaction (acii) (p. 1-7). doi: 10.1109/ACII.2019.8925465
Pais, M., Martinez, L., Ribeiro, O., Loureiro, J., Fernandez, R., Valiengo, L., ... Forlenza, O. (2020). Early diagnosis and treatment of Alzheimer’s disease: new definitions and challenges. Braz J Psychiatry, 431–441.
Panda, R., Malheiro, R., & Paiva, R. P. (2020). Novel audio features for music emotion recognition. IEEE Transactions on Affective Computing, 11(4), 614-626. doi: 10.1109/TAFFC.2018.2820691
Parra, F., Scherer, S., Benezeth, Y., Tsvetanova, P., & Tereno, S. (2019). (revised may 2019) development and cross-cultural evaluation of a scoring algorithm for the biometric attachment test: Overcoming the challenges of multimodal fusion with "small data". IEEE Transactions on Affective Computing, 1-1. doi: 10.1109/TAFFC.2019.2921311
Paxiuba, C. M., & Lima, C. P. (2020). An Experimental Methodological Approach Working Emotions and Learning Using Facial Expressions Recognition. Brazilian Journal of Computers in Education, 28, 92–114.
Picard, R. W. (1997). Affective Computing. Massachusetts, USA: MIT Press, 2.
Plut, C., & Pasquier, P. (2019). Music Matters: An empirical study on the effects of adaptive music on experienced and perceived player affect. In 2019 ieee conference on games (cog) (p. 1-8). doi: 10.1109/CIG.2019.8847951
Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98–125.
Qin, Y., Zhang, H., Wang, Y., Mao, M., & Chen, F. (2020). 3d music impact on autonomic nervous system response and its therapeutic potential. In 2020 ieee conference on multimedia information processing and retrieval (mipr) (p. 364-369). doi: 10.1109/MIPR49039.2020.00080
Rahman, J. S., Gedeon, T., Caldwell, S., & Jones, R. (2020). Brain Melody Informatics: Analysing Effects of Music on Brainwave Patterns. In 2020 international joint conference on neural networks (ijcnn) (p. 1-8). doi: 10.1109/IJCNN48605.2020.9207392
Rahman, J. S., Gedeon, T., Caldwell, S., Jones, R., Hossain, M. Z., & Zhu, X. (2019). Melodious Micro-frissons: Detecting Music Genres From Skin Response. In 2019 international joint conference on neural networks (ijcnn) (p. 1-8). doi: 10.1109/ IJCNN.2019.8852318
Ramdinwawii, E., & Mittal, V. K. (2017). Effect of Different Music Genre: Attention vs. Meditation. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) (pp. 135–140). doi: 10.1109/ACIIW.2017.8272603
Ramírez, A. V., Hornero, G., Royo, D., Aguilar, A., & Casas, O. (2020). Assessment of Emotional States Through Physiological Signals and Its Application in Music Therapy for Disabled People. IEEE Access, 8, 127659-127671. doi: 10.1109/ACCESS.2020.3008269
Ranjkar, E., Rafatnejad, R., Nobaveh, A. A., Meghdari, A., & Alemi, M. (2019). Design, Fabrication, and Evaluation of the “Maya” Social Robot. In 2019 7th international conference on robotics and mechatronics (icrom) (p. 52-62). doi: 10.1109/ ICRoMb48714.2019.9071795
Ricci, G. (2019). Social Aspects of Dementia Prevention from a Worldwide to National Perspective: A Review on the International Situation and the Example of Italy. Behavioural neurology, 2019, 8720904. doi: 10.1155/2019/8720904
Rizos, G., & Schuller, B. (2019). Modelling Sample Informativeness for Deep Affective Computing. In Icassp 2019 - 2019 ieee international conference on acoustics, speech and signal processing (icassp) (p. 3482-3486). doi: 10.1109/ICASSP.2019.8683729
Rizzi, L., Rosset, I., & Roriz-Cruz, M. (2014). Global epidemiology of dementia: Alzheimer’s and vascular types. BioMed research international, 2014, 908915. doi: 10.1155/2014/908915
Rushambwa, M. C., & Mythili, A. (2017). Impact assessment of mental subliminal activities on the human brain through neuro feedback analysis. In 2017 third international conference on biosignals, images and instrumentation (icbsii) (p. 1-6). doi: 10.1109/ICBSII.2017.8082299
Saha, D. P., Bortz, B. C., Huang, W., Martin, T. L., & Knapp, R. B. (2016). Affect-Aware Intelligent Environment Using Musical Cues as an Emotion Learning Framework. In 2016 12th international conference on intelligent environments (ie) (p. 178-181). doi: 10.1109/IE.2016.39
Sanders, Q., Chan, V., Augsburger, R., Cramer, S. C., Reinkensmeyer, D. J., & Do, A. H. (2020). Feasibility of Wearable Sensing for In-Home Finger Rehabilitation Early After Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(6), 1363-1372. doi: 10.1109/TNSRE.2020.2988177
Santhosh, A. K., Sangilirajan, M., Nizar, N., Radhamani, R., Kumar, D., Bodda, S., & Diwakar, S. (2020). Computational exploration of neural dynamics underlying music cues among trained and amateur subjects. Procedia Computer Science, 171, 1839-
Retrieved from https://www.sciencedirect.com/science/article/pii/S1877050920311789 (Third International Conference on Computing and Network Communications (CoCoNet’19)) doi: https://doi.org/10.1016/ j.procs.2020.04.197
Savery, R., Rose, R., & Weinberg, G. (2019). Establishing Human-Robot Trust through Music-Driven Robotic Emotion Prosody and Gesture. In 2019 28th ieee international conference on robot and human interactive communication (ro-man) (p. 1-7). doi: 10.1109/RO-MAN46459.2019.8956386
Sawata, R., Ogawa, T., & Haseyama, M. (2019). Novel Audio Feature Projection Using KDLPCCA-Based Correlation with EEG Features for Favorite Music Classification. IEEE Transactions on Affective Computing, 10(3), 430-444. doi: 10.1109/ TAFFC.2017.2729540
Scardua, D. A., & Marques, K. (2018). Estudo da Identificação de Emoções Através da Inteligência Artificial. Multivix, Edu..
Scott, L. (2017). Creating Opera for Mobile Media: Artistic Opportunities and Technical Limitations. In 2017 14th international symposium on pervasive systems, algorithms and networks 2017 11th international conference on frontier of computer science and technology 2017 third international symposium of creative computing (ispan-fcst-iscc) (p. 477-484). doi: 10.1109/ISPAN -FCST-ISCC.2017.86
Seanglidet, Y., Lee, B. S., & Yeo, C. K. (2016). Mood prediction from facial video with music “therapy” on a smartphone. In 2016 wireless telecommunications symposium (wts) (p. 1-5). doi: 10.1109/WTS.2016.7482034
Shan, Y., Chen, T., Yao, L., Wu, Z., Wen, W., & Liu, G. (2018). Remote detection and classification of human stress using a depth sensing technique. In 2018 first asian conference on affective computing and intelligent interaction (acii asia) (p. 1-6). doi: 10.1109/ACIIAsia.2018.8470364
Sheffield, J., Karcher, N., & Barch, D. (2018). Cognitive deficits in psychotic disorders: a lifespan perspective. Neuropsychol Rev, 509—533.
Shen, X., Hu, X., Liu, S., Song, S., & Zhang, D. (2020). Exploring EEG microstates for affective computing: decoding valence and arousal experiences during video watching*. In 2020 42nd annual international conference of the ieee engineering in medicine biology society (embc) (p. 841-846). doi: 10.1109/EMBC44109.2020.9175482
Shukla, J., Cristiano, J., Oliver, J., & Puig, D. (2019). Robot Assisted Interventions for Individuals with Intellectual Disabilities: Impact on Users and Caregivers. International Journal of Sociall Robotics, 11, 631–649. doi: 10.1007/s12369-019-00527-w
Sonawane, A., Inamdar, M. U., & Bhangale, K. B. (2017). Sound based human emotion recognition using MFCC and multiple SVM. International Conference on Information, Communication, Instrumentation and Control (ICICIC).
Sondhi, M. (1968). New Methods of Pitch Extraction. IEEE Trans. Audio and Electroacoustics, 262–266.
Song, M., Yang, Z., Baird, A., Parada-Cabaleiro, E., Zhang, Z., Zhao, Z., & Schuller, B. (2019). Audiovisual Analysis for Recognising Frustration during Game-Play: Introducing the Multimodal Game Frustration Database. In 2019 8th international conference on affective computing and intelligent interaction (acii) (p. 517-523). doi: 10.1109/ACII.2019.8925464
Soysal, O. M., Kiran, F., & Chen, J. (2020). Quantifying Brain Activity State: EEG analysis of Background Music in A Serious Game on Attention of Children. In 2020 4th international symposium on multidisciplinary studies and innovative technologies (ismsit) (p. 1-7). doi: 10.1109/ISMSIT50672.2020.9255308
Sra, M., Vijayaraghavan, P., Rudovic, O., Maes, P., & Roy, D. (2017). DeepSpace: Mood-Based Image Texture Generation for Virtual Reality from Music. In 2017 ieee conference on computer vision and pattern recognition workshops (cvprw) (p. 2289-2298). doi: 10.1109/CVPRW.2017.283
Stappen, L., Karas, V., Cummins, N., Ringeval, F., Scherer, K., & Schuller, B. (2019). From Speech to Facial Activity: Towards Cross-modal Sequence-to-Sequence Attention Networks. In 2019 ieee 21st international workshop on multimedia signal processing (mmsp) (p. 1-6). doi: 10.1109/MMSP.2019.8901779
Su, J. H., Liao, Y. W., Wu, H. Y., & Zhao, Y. W. (2020). Ubiquitous music retrieval by context-brain awareness techniques. In 2020 ieee international conference on systems, man, and cybernetics (smc) (p. 4140-4145). doi: 10.1109/SMC42975.2020 .9282963
Subramaniam, G., Verma, J., Chandrasekhar, N., C., N. K., & George, K. (2018). Generating Playlists on the Basis of Emotion. In 2018 ieee symposium series on computational intelligence (ssci) (p. 366-373). doi: 10.1109/SSCI.2018.8628673
Suhaimi, N. S., Yuan, C. T. B., Teo, J., & Mountstephens, J. (2018). Modeling the affective space of 360 virtual reality videos based on arousal and valence for wearable EEG-based VR emotion classification. In 2018 ieee 14th international colloquium on signal processing its applications (cspa) (p. 167-172). doi: 10.1109/CSPA.2018.8368706
Syed, S., Chagani, S., Hafeez, M., Timothy, S., & Zahid, H. (2018, 10). Sign recognition system for differently abled people. In Proceedings of tencon 2018 (p. 1148-1153). doi: 10.1109/TENCON.2018.8650365
Tarvainen, J., Laaksonen, J., & Takala, T. (2017). Computational and Perceptual Determinants of Film Mood in Different Types of Scenes. In 2017 ieee international symposium on multimedia (ism) (p. 185-192). doi: 10.1109/ISM.2017.10
Teo, J., & Chia, J. T. (2018). Deep Neural Classifiers For Eeg-Based Emotion Recognition In Immersive Environments. In 2018 international conference on smart computing and electronic enterprise (icscee) (p. 1-6). doi: 10.1109/ICSCEE.2018.8538382
Thammasan, N., Hagad, J. L., Fukui, K.-i., & Numao, M. (2017). Multimodal stability-sensitive emotion recognition based on brainwave and physiological signals. In 2017 seventh international conference on affective computing and intelligent interaction workshops and demos (aciiw) (p. 44-49). doi: 10.1109/ACIIW.2017.8272584
Tiple, B. S., Joshi, P. P., & Patwardhan, M. (2016). An efficient framework for recommendation of Hindustani Art Music. In 2016 international conference on computing communication control and automation (iccubea) (p. 1-5). doi: 10.1109/ ICCUBEA.2016.7860008
Tiwari, A., & Tiwari, R. (2017). Design of a brain computer interface for stress removal using yoga a smartphone application. In 2017 international conference on computing, communication and automation (iccca) (p. 992-996). doi: 10.1109/CCAA.2017.8229939
UN. (2020). World Population Ageing 2020: Highlights [Computer software manual]. Retrieved from https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/ undesa_pd-2020_world_population_ageing_highlights.pdf (Last accessed: 2021 Jul. 05)
Verma, G., Dhekane, E. G., & Guha, T. (2019). Learning affective correspondence between music and image. In Icassp 2019 - 2019 ieee international conference on acoustics, speech and signal processing (icassp) (p. 3975-3979). doi: 10.1109/ ICASSP.2019.8683133
Vicencio-Martínez, B., A. A.and Tovar-Corona, & Garay-Jiménez, L. I. (2019). Emotion Recognition System Based on Electroencephalography. International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 11–13.
Vinayagasundaram, B., Mallik, R., Aravind, M., Aarthi, R. J., & Senthilrhaj, S. (2016). Building a generative model for affective content of music. In 2016 international conference on recent trends in information technology (icrtit) (p. 1-6). doi: 10.1109/ICRTIT.2016.7569588
Wang, K., Wen, W., & Liu, G. (2016). The autonomic nervous mechanism of music therapy for dental anxiety. In 2016 13th international computer conference on wavelet active media technology and information processing (iccwamtip) (p. 289-292). doi: 10.1109/ICCWAMTIP.2016.8079858
Wang, X., Wenya, L., Toiviainen, P., Tapani, R., & Cong, F. (2020). Group analysis of ongoing EEG data based on fast doublecoupled nonnegative tensor decomposition. Journal of Neuroscience Methods, 330, 108502. doi: https://doi.org/10.1016/ j.jneumeth.2019.108502
Wang, Y., & Kosinski, M. (2018). Deep neural networks are more accurate than humans at detecting sexual orientation from facial images. Journal of Personality and Social Psychology, 246–257. doi: 10.1037/pspa0000098
Wardana, A. Y., Ramadijanti, N., & Basuki, A. (2018). Facial Expression Recognition System for Analysis of Facial Expression Changes when Singing. In 2018 international electronics symposium on knowledge creation and intelligent computing (ieskcic) (p. 98-104). doi: 10.1109/KCIC.2018.8628578
WHO. (2017). Global action plan on the public health response to dementia (2017-2025) [Computer software manual]. https://apps.who.int/iris/bitstream/handle/10665/259615/9789241513487-eng .pdf;jsessionid=4DA480FA93471AC53988E52B35F416D8?sequence=1 (Last accessed: 2021 Jul. 05)
WHO. (2019). Risk reduction of cognitive decline and dementia: WHO Guidelines [Computer software manual]. https://www.who.int/publications/i/item/risk-reduction-of-cognitive-decline -and-dementia (Last accessed: 2021 Jul. 05)
Wingerden, E. v., Barakova, E., Lourens, T., & Sterkenburg, P. S. (2020). Robot-mediated therapy to reduce worrying in persons with visual and intellectual disabilities. Journal of applied Research in Intellectual Disabillities, 39, 229–238. doi: 10.1111/jar.12801
Wolfe, H., Peljhan, M., & Visell, Y. (2020). Singing robots: How embodiment affects emotional responses to non-linguistic utterances. IEEE Transactions on Affective Computing, 11(2), 284-295. doi: 10.1109/TAFFC.2017.2774815
Wu, C.-H., Huang, Y.-M., & Hwang, J.-P. (2016). Review of affective computing in education/learning: Trends and challenges. British Journal of Educational Technology, 47(6), 1304–1323.
Wu, Y.-C., & Chen, H. H. (2016). Generation of Affective Accompaniment in Accordance With Emotion Flow. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(12), 2277-2287. doi: 10.1109/TASLP.2016.2603006
Xing, B., Zhang, K., Zhang, L., Wu, X., Dou, J., & Sun, S. (2019). Image–music synesthesia-aware learning based on emotional similarity recognition. IEEE Access, 7, 136378-136390. doi: 10.1109/ACCESS.2019.2942073
Xu, T., Yin, R., Shu, L., & Xu, X. (2019). Emotion Recognition Using Frontal EEG in VR Affective Scenes. In 2019 ieee mtt-s international microwave biomedical conference (imbioc) (Vol. 1, p. 1-4). doi: 10.1109/IMBIOC.2019.8777843
Xu, X., Deng, J., Coutinho, E., Wu, C., Zhao, L., & Schuller, B. W. (2019). Connecting Subspace Learning and Extreme Learning Machine in Speech Emotion Recognition. IEEE Transactions on Multimedia, 21(3), 795-808. doi: 10.1109/TMM .2018.2865834
Yamada, Y., & Ono, Y. (2019). Detection of Music Preferences using Cerebral Blood Flow Signals. In Annual international conference of the ieee engineering in medicine and biology society (pp. 490–493). doi: 10.1109/EMBC.2019.8856351
Yi-Hsiang, M., Han, Y., Lin, J.-Y., Cosentino, S., Nishio, Y., Oshiyama, C., & Takanishi, A. (2018). A Synchronization Feedback System to Improve Interaction Correlation in Subjects With Autism Spectrum Disorder. In 2018 9th international conference on awareness science and technology (icast) (p. 285-290). doi: 10.1109/ICAwST.2018.8517233
Zhang, Z., Han, J., Coutinho, E., & Schuller, B. (2019). Dynamic difficulty awareness training for continuous emotion prediction. IEEE Transactions on Multimedia, 21(5), 1289-1301. doi: 10.1109/TMM.2018.2871949
Zhang, Z., Han, J., Deng, J., Xu, X., Ringeval, F., & Schuller, B. (2018). Leveraging Unlabeled Data for Emotion Recognition With Enhanced Collaborative Semi-Supervised Learning. IEEE Access, 6, 22196-22209. doi: 10.1109/ACCESS.2018.2821192
Zhao, J., Mao, X., & Chen, L. (2019). Speech emotion recognition using deep 1D and 2D CNN LSTM networks. Biomedical Signal Processing and Control, 47, 312–323.
Zhu, L., Tian, X., Xu, X., & Shu, L. (2019). Design and Evaluation of the Mental Relaxation VR Scenes Using Forehead EEG Features. In 2019 ieee mtt-s international microwave biomedical conference (imbioc) (Vol. 1, p. 1-4). doi: 10.1109/ IMBIOC.2019.8777812
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Maíra Araújo de Santana; Clarisse Lins de Lima; Arianne Sarmento Torcate; Flávio Secco Fonseca; Wellington Pinheiro dos Santos
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.