Efecto de la aromatización permanente con ajo deshidratado e in natura sobre las características fisicoquímicas, actividad antioxidante y estabilidad termica del aceite de oliva

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i15.22945

Palabras clave:

Olea europeae L.; Allium sativum; Antioxidante; Aceite de oliva.

Resumen

El ajo (Allium sativum) se usa popularmente para aromatizar el aceite de oliva, tiene altos niveles de alicina y selenio con capacidad antioxidante y también compuestos fenólicos como los ácidos p-cumárico y cafeico. El presente trabajo evaluó la calidad del aceite de oliva virgen extra aromatizado individualmente con ajo seco e in natura, ambos en la proporción de 10 % (m/m) en infusión permanente durante 50 días a 60 ± 2⁰C. Se realizaron análisis para determinar la actividad antioxidante, el contenido fenólico total, la estabilidad termica y los principales parámetros de calidad mediante la determinación del índice de acidez, índice de peróxidos, coeficiente de extinción específico por absorción UV, actividad del agua (Aw), contenido de clorofilas y carotenoides. Los resultados mostraron que la infusión permanente de ajo deshidratado (AOEVD) y ajo fresco (AOEVIN) en aceite de oliva aumentó la actividad antioxidante de las muestras evaluadas, preservó el contenido de compuestos fenólicos totales durante el almacenamiento y retrasó el proceso de degradación de las clorofilas en relación con la muestra de control (AOEVP). La muestra de AOEVIN tuvo el índice de acidez más alto; el AOEVD tuvo el Aw más bajo; el AOEVD y el AOEVIN redujeron el índice de peróxido en relación al AOEVP. La adición de 10 % (m/m) de ajo deshidratado o in natura de forma permanente puede aumentar la capacidad antioxidante, el contenido fenólico y retrasar la degradación de las clorofilas en el aceite de oliva.

Citas

A.O.A.C. (2016). Association of Official analytical Chemists. Official methods of analysis of AOAC International. 20 ed.

Aslani, M. R., Najarnezhad, V., Mohri, M. & Azad, M. (2011). The effect of allicin on blood and tissue lead content in mice. Comparative Clinical Pathology, 20, 121–125.

Aydin, S. & Kahyaoglu, D. T. (2020). Antioxidant effect potential of garlic in vitro and real food system: effects of garlic supplementation on oxidation stability and sensory properties of butter. European Journal of Lipid Science and Technology, 122 (3), 1900261-1900273.

Baiano, A., Gambacorta, G. & La notte, E. (2010). Aromatization of olive oil. Transworld Research Network, 1-29.

Baiano, A., Gambacorta, G., Terracone, C., Previtali, M. A., Lamacchia, C. & La notte, E. (2009). Changes in phenolic content and antioxidant activity of Italian extra-virgin olive oils during storage. Journal of Food Science, 74 (2), 177–183.

Baiano, A., Previtali, M. A., Viggiani, I., Varva, G., Squeo, G., Paradiso, V. M., Summo, C., Gomes, T. & Caponio, F. (2016). As oil blending affects physical, chemical, and sensory characteristics of flavoured olive oils. European Food Research and Technology, 242, 1693–1708.

Bozin, B., Mimica-Dukic, N., Samojlik, I., Goran, A & Igic, R. (2008). Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chemistry, 111, 925-929.

BRASIL. (2018). Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 24, 18 de junho de 2018. Regulamento técnico do azeite de oliva e do óleo de bagaço de oliva. Diário Oficial da União, Brasília, DF.

Burian, J. P., Sacramento, L. V. S. & Carlos, I. Z. (2017). Fungal infection control by garlic extracts (Allium sativum L.) and modulation of peritoneal macrophages activity in murine model of sporotrichosis. Brazilian Journal of Biology, 77 (4), 848–855.

Caponio, F., Durante, V., Varva, G., Silletti, R., Prevital, A., Viggiani, I., Squeo, G., Summo, C., Pasqualone, A., Gomes, T. & Baiano, A. (2016). Effect of infusion of spices into the oil vs. combined malaxation of olive paste and spices on quality of naturally flavoured virgin olive oils. Food Chemistry, 202, 221–228.

Caporaso, N., Paduano, A., Nicoletti, G. & Sacchi, R. (2013). Capsaicinoids, antioxidant activity, and volatile compounds in olive oil flavored with dried chili pepper (Capsicum annuum). European Journal Lipid Science Technology, 115, 1434–1442.

CEE (1991). Regulamento da Comissão (ECC) n⁰ 2568/91: relativo às características do azeite e óleo de bagaço de azeitona e nos métodos de análise pertinentes. Jornal Oficial da União Europeia, L248, 1-82.

Cestario, A. C. de O.; Meira, K. U.; Contiero, R. L.; Rosa, C. I. L. F. (2021). Quality of olive oils and olive bagasse oil and their use in thermal processes. Research, Society and Development, 10 (2), 1-8.

Chandran, J., Nayana, N., Roshini, N. & Nisha, P. (2017). Oxidative stability, thermal stability and acceptability of coconut oil flavored with essential oils from black pepper and ginger. Journal of Food Science and Technology, 54, 144−152.

Cho, B.H.S. & Xu, S. (2000). Effects of allyl mercaptan and various allium-derived compounds on cholesterol synthesis and secretion in Hep-G2 cells, Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 126 (2), 195-201.

Costa, S. M. L., Melloni, R. & Ferreira, G. M. R. (2019). Potencial biotecnológico de microrganismos do solo na olivicultura do brasil: uma revisão. Revista em Agronegócio e Meio Ambiente, 12 (2), 723.

Felix, A. L. M., Medeiros, I. L. & Medeiros, F. D. (2018). Allium Sativum: uma nova abordagem frente a resistência microbiana - uma revisão. Brazilian Journal of Health, 1 (2), 201–207.

Fonseca, G. M., Passos, T. C., Ninahuaman, M. F.M.L., Caroci, A. S. & Costa, L. S. (2014). Avaliação da atividade antimicrobiana do alho (Allium sativum Liliaceae) e de seu extrato aquoso. Revista Brasileira de Plantas Medicinais, 16, 679–684.

Foscolou, A., Critselis, E. & Panagiotakos, D. (2018). Olive oil consumption and human health: A narrative review. Maturitas, 118, 60–66.

Gambacorta, G., Faccia, M., Pati, S., Lamacchia, C., Baiano, A. & La Notte, E. (2007). Changes in the chemical and sensorial profile of extra virgin olive oils flavored with herbs and spices during storage. Journal of Food Lipids, 14, 202–215.

Gorzynik-Debicka, M., Przychodzen, P., Capello, F., Kuban-Jankowska, A., Gammazza, A. M., Knap, N., Wozniak, M. & Gorska-Ponikowska, M. (2018). Potential health benefits of olive oil and plant polyphenols. International Journal of Molecular Sciences, 19, 1–13.

Gray, J. I. (1978). Measurement of lipid oxidation: a review. Journal of the American Oil Chemist's Society, 55, 538-546.

Guo, Z., Jia, X., Zheng, Z., Lu, X., Zheng, Y., Zheng, B. & Xiao, J. (2018). Chemical composition and nutritional function of olive (Olea europea L.): a review. Phytochemistry Reviews, 17, 1091–1110.

Hua Kao, T., Ju Chen, C. & Huei Chen, B. (2011). An improved high-performance liquid chromatography – photodiode array detection – atmospheric pressure chemical ionization – mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz. Talanta, 86, 349-355.

Kasimoglu, Z., Tontul, I., Soylu, A., Gulen, K. & Topuz, A. (2018). The oxidative stability of flavoured virgin olive oil: the effect of the water activity of Rosemary. Journal of Food Measurement and Characterization, 12, 2080-2086.

Keramat, M., Golmakani, M., Aminlari, M. & Shekarforoush, S. S. (2016). Comparative effect of Bunium persicum and Rosmarinus officinalis essential oils and their synergy with citric acid on the oxidation of virgin olive oil. International Journal of Food Properties, 19 (12), 2666–2681.

Kouka, P., Priftis, A., Stagos, D., Angelis, A., Stathopoulos, P., Xynos, N., Skaltsoumis, A., Mamoulakis, C., Tsatsakis, A. & Spandidos, D. A. (2017). Assessment of the antioxidant activity of an olive oil total polyphenolic fraction and hydroxytyrosol from a Greek Olea europea variety in endothelial cells and myoblasts. International Journal of Molecular Medicine, 40, 708-712.

Lanfer-Marquez, U. M., Barros, R. M. C. & Sinnecker, P. (2005). Antioxidant activity of chlorophylls and their derivatives. Food Research International, 38, 885-891.

Liu, Q., Singh, S. & Green, A. (2002). High-oleic and high-stearic cottonseed oils: nutritionally improved cooking oils developed using gene silencing. Journal of American College of Nutrition, 21, 205-211.

Makni, M., Haddar, A., Fraj, A. B. & Zeghal, N. (2015). Physico-chemical properties, composition, and oxidative stability of olive and soybean oils under different conditions. International Journal of Food Properties, 18, 194–204.

Mannina, L., D'imperio, M., Gobbino, M., D'amico, I., Casini, A., Emanuele, M. C. & Sobolev, A. P. (2012). Nuclear magnetic resonance study of flavoured olive oils. Flavour and Fragrance Journal, 27, 250–259.

Minguez-Mosquera, M. I. (1991). Determination of chlorophylls and carotenoids by high performance liquid chromatography during olive lactic fermentation. Journal of Chromatography, 585, 259-266.

Minuceli, F. da S.; Silva, J. M. da; Silveira, R. da; Santos, O. O. (2021). UV-VIS methodology for the quantification of vegetable oil in adulterated olive oil. Research, Society and Development, 10(6), 1-8.

Perestrelo, R., Silva, C., Silva, P. & Câmara, J. S. (2017). Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants. Food Chemistry, 227, 111–121.

Ramos, A. C.; Negreiros, J. H. C. N.; Lima, A. K. M. de; Cordeiro, M. de A.; Godoy, G. P. (2020). The therapeutic applicability of tyrosol and hydroxytyrosol for Dentistry. Research, Society and Development, 9 (8), 1-16.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical, Biology & Medicine, 26, 1231-1237.

Sacchi, R., Medaglia, D. D., Paduano, A., Caporaso, N. & Genovese, A. (2017). Characterisation of lemon-flavoured olive oils. LWT - Food Science and Technology, 79, 326–332.

Serrano, L., Cruz, A., Sousa, S. & Morais, Z. (2016). Alterations in monovarietal, blended and aromatized Portuguese virgin olive oils under four storage conditions for 12 months. European Food Research and Technology, 242 (7), 1041-1055.

Shäfer, G. & Kaschula, C. H. (2014). The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anti-Cancer Agents in Medicinal Chemistry, 14 (2), 233- 240.

Singleton, V. L., Orthofer, R. & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods in Enzimology, 299, 152-178.

Sousa, A., Casal, S., Malheiro, R., Lamas, H., Bento, A. & Pereira, J. A. (2015). Aromatized olive oils: Influence of flavouring in quality, composition, stability, antioxidants, and antiradical potential. LWT - Food Science and Technology, 60 (1), 22–28.

Welti, J. & Vergana, F. (1997). Atividade de água/ Conceito y aplicación em alimentos com alto contenido de humedad. In: Aguilera, J.M. Temas em Tecnologia de alimentos. Santiago, Chile, 1, 11-26.

Yang, Y., Song, X., Sui, X., Qi, B., Wang, Z., Li, Y. & Jiang, L. (2016). Rosemary extract can be used as a synthetic antioxidant to improve vegetable oil oxidative stability. Industrial Crops and Products, 80, 141-147.

Yilmazer, M., Goksu, S., Ozkan, G. & Karacabey, E. (2016). Aroma transition from rosemary leaves during aromatization of olive oil. Journal of Food and Drug Analysis, 24, 299–304.

Publicado

29/11/2021

Cómo citar

SANTOS, C. de O. S. dos .; BORTOLOSSI, T. L.; DINON, A. Z. Efecto de la aromatización permanente con ajo deshidratado e in natura sobre las características fisicoquímicas, actividad antioxidante y estabilidad termica del aceite de oliva . Research, Society and Development, [S. l.], v. 10, n. 15, p. e412101522945, 2021. DOI: 10.33448/rsd-v10i15.22945. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/22945. Acesso em: 3 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas