Diseño de vacuna por inmunoinformática contra el HCV: Caracterización química y predicción de epítopos de células T
DOI:
https://doi.org/10.33448/rsd-v10i16.22994Palabras clave:
Hepatitis C; Bioinformática; Vacuna.Resumen
La hepatitis C es una enfermedad que afecta al hígado provocando su inflamación, llegando a miles de personas cada año, sin embargo actualmente no existen vacunas para el virus responsable de la enfermedad, el VHC, aunque ya se están realizando estudios sobre su viabilidad. Por lo tanto, la vacunación inversa puede ser de gran ayuda para detectar dianas prometedoras para su uso como antígeno de vacuna y, concomitantemente, formular una vacuna eficaz. El trabajo respectivo tiene como objetivo obtener datos relevantes para el diseño de vacunas prometedoras contra el VHC mediante el uso de herramientas bioinformáticas. Por lo tanto, después de que se obtuvieron las secuencias de virus del Centro Nacional de Información Biotecnológica (NCBI), se realizaron análisis del potencial antigénico utilizando VaxiJen v.2.0. y desde ANTIGENpro, en conjunto con AlgPred, se verificó el potencial alergénico, luego de verificadas y seleccionadas las proteínas, se pasaría a los siguientes pasos donde se sometían a la caracterización de las propiedades fisicoquímicas, mediante y la predicción de epítopos de células T se realizó en NetTepi. Entre los resultados obtenidos, se puede observar que la proteína E2 fue la única que demostró alergenicidad, mientras que la proteína E1 no presentó potencial antigénico y las demás proteínas se clasificaron como inestables, siguiendo solo a la proteína NS4a para la predicción de epítopos de células T.
Citas
Adhikari, U. K., Tayebi, M., & Rahman, M. M. (2018). Immunoinformatics approach for epitope-based peptide vaccine design and active site prediction against polyprotein of emerging oropouche virus. Journal of immunology research, 2018.
Axley, P., Ahmed, Z., Ravi, S., & Singal, A. K. (2018). Hepatitis C virus and hepatocellular carcinoma: a narrative review. Journal of clinical translational hepatology, 6(1), 79. https://doi.org/10.14218/JCTH.2017.00067
Bulut, M. E., Topalca, U. S., Murat, A., Teke, L., Canalp, H. Z., Ocal, M., & Bayraktar, B. (2021). HCV Genotype Distribution of Patients with Chronic Hepatitis C in Istanbul. The Medical Bulletin of Sisli Etfal Hospital, 55(1), 86.
Calis, J. J., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., . . . Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS computational biology, 9(10), e1003266.
Castelli, M., Cappelletti, F., Diotti, R. A., Sautto, G., Criscuolo, E., Dal Peraro, M., & Clementi, N. (2013). Peptide-based vaccinology: experimental and computational approaches to target hypervariable viruses through the fine characterization of protective epitopes recognized by monoclonal antibodies and the identification of T-cell-activating peptides. Clinical Developmental Immunology, 2013.
Castro, A., Ozturk, K., Pyke, R. M., Xian, S., Zanetti, M., & Carter, H. (2019). Elevated neoantigen levels in tumors with somatic mutations in the HLA-A, HLA-B, HLA-C and B2M genes. BMC medical genomics, 12(6), 1-13.
Deng, L., Hernandez, N., Zhong, L., Holcomb, D. D., Yan, H., Virata, M. L., . . . Struble, E. J. P. o. t. N. A. o. S. (2021). A conserved epitope III on hepatitis C virus E2 protein has alternate conformations facilitating cell binding or virus neutralization. 118(28).
El Abd, Y. S., Tabll, A. A., El Din, N. G. B., Hosny, A. E.-D. S., Moustafa, R. I., El-Shenawy, R., . . . El-Awady, M. K. (2011). Neutralizing activities of caprine antibodies towards conserved regions of the HCV envelope glycoprotein E2. Virology Journal, 8(1), 1-12.
Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, 571-607.
Gong, Y., & Cun, W. J. I. j. o. m. s. (2019). The role of apoe in HCV infection and comorbidity. 20(8), 2037.
Kaur, K., Gandhi, M. A., & Slish, J. (2015). Drug-drug interactions among hepatitis C virus (HCV) and human immunodeficiency virus (HIV) medications. Infectious diseases therapy, 4(2), 159-172.
Leow, C. Y., Kazi, A., Ismail, C. M. K. H., Chuah, C., Lim, B. H., Leow, C. H., & Singh, K. K. B. (2020). Reverse vaccinology approach for the identification and characterization of outer membrane proteins of Shigella flexneri as potential cellular-and antibody-dependent vaccine candidates. Clinical experimental vaccine research, 9(1), 15-25.
Li, H.-C., & Lo, S.-Y. (2015). Hepatitis C virus: Virology, diagnosis and treatment. World journal of hepatology, 7(10), 1377. https://doi.org/10.4254/wjh.v7.i10.1377
Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide vaccine: progress and challenges. Vaccines, 2(3), 515-536.
Lund, O., Nielsen, M., Kesmir, C., Petersen, A. G., Lundegaard, C., Worning, P., . . . Justesen, S. (2004). Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics, 55(12), 797-810.
Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. J. B. (2010). High-throughput prediction of protein antigenicity using protein microarray data. 26(23), 2936-2943.
Martinez, M. A., & Franco, S. J. V. (2021). Therapy Implications of Hepatitis C Virus Genetic Diversity. Viruses, 13(1), 41.
Meuleman, T. J., Cowton, V. M., Patel, A. H., & Liskamp, R. M. (2021). Design and synthesis of HCV-E2 glycoprotein epitope mimics in molecular construction of potential synthetic vaccines. Viruses, 13(2), 326.
Nascimento, I., & Leite, L. (2012). Recombinant vaccines and the development of new vaccine strategies. Brazilian journal of medical biological research, 45, 1102-1111.
Ong, E., Wong, M. U., Huffman, A., & He, Y. J. F. i. i. (2020). COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. 11, 1581.
Panahi, H. A., Bolhassani, A., Javadi, G., & Noormohammadi, Z. (2018). A comprehensive in silico analysis for identification of therapeutic epitopes in HPV16, 18, 31 and 45 oncoproteins. PloS one, 13(10), e0205933.
Pham, L. V., Ramirez, S., Carlsen, T. H., Li, Y. P., Gottwein, J. M., Bukh, J. (2017). Efficient hepatitis C virus genotype 1b core-NS5A recombinants permit efficacy testing of protease and NS5A inhibitors. Antimicrobial agents chemotherapy, 61(6).
Saha, S., & Raghava, G. (2007). Prediction of allergenic proteins and mapping of IgE epitopes in allergens.
Sawada, L., Pinheiro, A. C. C., Locks, D., Pimenta, A. d. S. C., Rezende, P. R., Crespo, D. M., . . . Oliveira Filho, A. B. d. (2011). Distribution of hepatitis C virus genotypes among different exposure categories in the State of Pará, Brazilian Amazon. Revista da Sociedade Brasileira de Medicina Tropical, 44, 8-12.
Schuch-Goi, S. B., Scherer, J. N., Kessler, F. H. P., Sordi, A. O., Pechansky, F., & von Diemen, L. (2017). Hepatitis C: clinical and biological features related to different forms of cocaine use. Trends in psychiatry psychotherapy, 39, 285-292.
Sirskyj, D., Diaz‐Mitoma, F., Golshani, A., Kumar, A., & Azizi, A. (2011). Innovative bioinformatic approaches for developing peptide‐based vaccines against hypervariable viruses. Immunology cell biology, 89(1), 81-89.
Stamataki, Z. J. E. r. o. a.-i. t. (2010). Hepatitis C infection of B lymphocytes: more tools to address pending questions. 8(9), 977-980.
Trolle, T., & Nielsen, M. (2014). NetTepi: an integrated method for the prediction of T cell epitopes. Immunogenetics, 66(7), 449-456.
Yasmin, T., & Nabi, A. N. (2016). B and T cell epitope‐based peptides predicted from evolutionarily conserved and whole protein sequences of Ebola virus as vaccine targets. Scandinavian journal of immunology, 83(5), 321-337.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Fabiano Ricardo Fontes Santos; Esther Santos Santana; Daniela Droppa-Almeida
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.