Principios de cristalización de lactosa y reología del concentrado de proteína de leche
DOI:
https://doi.org/10.33448/rsd-v10i15.23028Palabras clave:
Concentrado de proteína de leche; Cristalización de lactosa; Reología; Productos lácteos; Spray dryer; Ingeniería de alimentos; Tecnología láctea.Resumen
El concentrado de proteína de leche (MPC) es una designación comercial para ingredientes lácteos con mayor contenido de proteína y menor contenido de lactosa que la leche desnatada en polvo convencional. La lactosa en su forma amorfa se encuentra en varios polvos lácteos secados por aspersión. La lactosa amorfa es termodinámicamente inestable y puede movilizarse y cristalizar con el tiempo a una temperatura y un contenido de humedad adecuados. La absorción de humedad del aire precede a la cristalización, lo que mejora la cohesión y el apelmazamiento del MPC. Este aumento de humedad da como resultado una mala rehidratación y dispersabilidad, menor rendimiento durante el secado, problemas de operación, dificultades de manipulación y almacenamiento. Además, la cristalización de lactosa en MPC puede causar la reacción de pardeamiento de Maillard y oxidación de grasas. Para evitar este problema, es necesario precristalizar la lactosa como alfa-lactosa monohidrato, que no es higroscópica, antes del secado por pulverización. Dicho procedimiento es esencial para prevenir el deterioro de MPC resultante de la cristalización de lactosa o reacciones químicas. Además, el control de este paso es importante para obtener un polvo específico y reproducible, en términos de tamaño y nivel de cristalización. Existen numerosos informes sobre la reología de los productos lácteos, incluida la leche cruda y los productos acidificados como el yogur y el queso. Sin embargo, se han realizado pocos estudios sobre sistemas concentrados. En consecuencia, el objetivo del presente trabajo es revisar conceptos básicos de cristalización de lactosa y reología del concentrado de proteína de leche.
Citas
Abbas Syed, Q. (2018). Effects of Different Ingredients on Texture of Ice Cream. Journal of Nutritional Health & Food Engineering, 8(6). https://doi.org/10.15406/jnhfe.2018.08.00305
Agarwal, S., Beausire, R., Patel, S., & Patel, H. (2015). Innovative Uses of Milk Protein Concentrates in Product Development. Journal of Food Science, 80(S1), A23–A29. https://doi.org/10.1111/1750-3841.12807
Alvarez, V. B., Wolters, C. L., Vodovotz, Y., & Ji, T. (2005). Physical Properties of Ice Cream Containing Milk Protein Concentrates. Journal of Dairy Science, 88(3), 862–871. https://doi.org/10.3168/jds.S0022-0302(05)72752-1
Andersen, G. (2005). The Anhydro Paraflash Process for Production of Whey and Permeate Powder. Innovations in Food Technology, 27, 20–23.
Azarnoosh, J., & Hassanipour, F. (2021). Fluid-Structure Interaction Modeling of Lactating Breast: Newtonian vs. Non Newtonian Milk. Journal of Biomechanics, 124, 110500. https://doi.org/10.1016/j.jbiomech.2021.110500
Batra, A., Desai, D., & Serajuddin, A. T. M. (2020). Conversion of Alpha-Lactose Monohydrate to Anhydrous Form with Superior Tabletability by Twin-Screw Extrusion at Elevated Temperature. International Journal of Pharmaceutics, 588, 119790. https://doi.org/10.1016/j.ijpharm.2020.119790
Beuselinck, L., Govers, G., Poesen, J., Degraer, G., & Froyen, L. (1998). Grain-Size Analysis by Laser Diffractometry: Comparison with the Sieve-Pipette Method. Catena, 32(3–4), 193–208. https://doi.org/10.1016/S0341-8162(98)00051-4
Bienvenue, A., Jiménez-Flores, R., & Singh, H. (2003). Rheological Properties of Concentrated Skim Milk: Importance of Soluble Minerals in the Changes in Viscosity During Storage. Journal of Dairy Science, 86(12), 3813–3821. https://doi.org/10.3168/jds.S0022-0302(03)73988-5
Bildyukevich, A. V., Plisko, T. V., Lipnizki, F., & Pratsenko, S. A. (2020). Correlation Between Membrane Surface Properties, Polymer Nature and Fouling in Skim Milk Ultrafiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605, 125387. https://doi.org/10.1016/j.colsurfa.2020.125387
Bista, A., Tobin, J. T., O’Donnell, C. P., & O’Shea, N. (2020). Monitoring Viscosity and Total Solids Content of Milk Protein Concentrate Using an Inline Acoustic Flowmeter at Laboratory Scale. Foods, 9(9). https://doi.org/10.3390/foods9091310
Bloore, C., & Boag, I. (1981). Some Factors Affecting the Viscosity of Concentrated Skim Milk. New Zealand Journal of Dairy Science and Technology, 16(2), 143–154.
Briuglia, M. L., Sefcik, J., & Horst, J. H. T. (2019). Measuring Secondary Nucleation Through Single Crystal Seeding. Crystal Growth and Design, 19(1), 421–429. https://doi.org/10.1021/acs.cgd.8b01515
Bronlund, J., & Paterson, T. (2004). Moisture Sorption Isotherms for Crystalline, Amorphous and Predominantly Crystalline Lactose Powders. International Dairy Journal, 14(3), 247–254.
Bylund, G. (1995). Dairy Processing Handbook. (1st ed.). Tetra Park Processing Systems AB.
Chen, Z., Wu, T., Yang, X., Yue, F., & Fu, F. (2020). An Exploration of the Solvent- and Acid-Catalyzed Mutarotation Mechanisms of Lactose in Aqueous Solution. New Journal of Chemistry, 44(38), 16421–16430.
https://doi.org/10.1039/d0nj03660a
Cheng, D. (1987). Thixotropy. International Journal of Cosmetic Science, 9(4), 151–191.
Chernov, A. A. (1989). Formation of Crystals in Solutions. Contemporary Physics, 30(4), 251–276.
Choscz, C., Held, C., Eder, C., Sadowski, G., & Briesen, H. (2019). Measurement and Modeling of Lactose Solubility in Aqueous Electrolyte Solutions. Industrial and Engineering Chemistry Research, 58(45), 20797–20805. https://doi.org/10.1021/acs.iecr.9b04031
Cuartas-Uribe, B., Alcaina-Miranda, M. I., Soriano-Costa, E., Mendoza-Roca, J. A., Iborra-Clar, M. I., & Lora García, J. (2009). A Study of the Separation of Lactose from Whey Ultrafiltration Permeate Using Nanofiltration Desalination, 241(1–3), 244–255. https://doi.org/10.1016/j.desal.2007.11.086
Darcy, P., & Buckton, G. (1998). Crystallization of Bulk Samples of Partially Amorphous Spray-Dried Lactose. Pharmaceutical Development and Technology, 3(4), 503–507. https://doi.org/10.3109/10837459809028632
Darmali, C., Mansouri, S., Yazdanpanah, N., & Woo, M. W. (2019). Mechanisms and Control of Impurities in Continuous Crystallization: A Review. Industrial and Engineering Chemistry Research, 58(4), 1463–1479.https://doi.org/10.1021/acs.iecr.8b04560
Edgar, S., & Axel, M. (1998). Milk and Dairy Product Technology (1st ed.). Routledge. https://doi.org/10.1201/9780203747162
Enayati, M., Gong, Y., Goddard, J. M., & Abbaspourrad, A. (2018). Synthesis and Characterization of Lactose Fatty Acid Ester Biosurfactants Using Free and Immobilized Lipases in Organic Solvents. Food Chemistry, 266, 508–513. https://doi.org/10.1016/j.foodchem.2018.06.051
Fan, F., Liu, M., Shi, P., Xu, X., Lu, W., Wang, Z., & Du, M. (2018). Protein Cross-Linking and the Maillard Reaction Decrease the Solubility of Milk Protein Concentrates. Food Science and Nutrition, 6(5), 1196–1203. https://doi.org/10.1002/fsn3.657
Fang, Y., Selomulya, C., Ainsworth, S., Palmer, M., & Chen, X. (2011). On Quantifying the Dissolution Behaviour of Milk Protein Concentrate. Food Hydrocolloids, 25(3), 503–510. https://doi.org/10.1016/j.foodhyd.2010.07.030
Ferrer, M. A., Hill, A. R., & Corredig, M. (2008). Rheological Properties of Rennet Gels Containing Milk Protein Concentrates. Journal of Dairy Science, 91(3), 959–969. https://doi.org/10.3168/jds.2007-0525
Fitzpatrick, J. J., Hodnett, M., Twomey, M., Cerqueira, P. S. M., O’Flynn, J., & Roos, Y. H. (2007). Glass Transition and the Flowability and Caking of Powders Containing Amorphous Lactose. Powder Technology, 178(2), 119128.
https://doi.org/10.1016/j.powtec.2007.04.017
Fox, P. F., & Brodkorb, A. (2008). The Casein Micelle: Historical Aspects, Current Concepts and Significance. International Dairy Journal, 18(7), 677–684. https://doi.org/10.1016/j.idairyj.2008.03.002
Galenko, P. K., & Ankudinov, V. (2019). Local Non-Equilibrium Effect on the Growth Kinetics of Crystals. Acta Materialia, 168, 203–209. https://doi.org/10.1016/j.actamat.2019.02.018
Gänzle, M. G., Haase, G., & Jelen, P. (2008). Lactose: Crystallization, Hydrolysis and Value
Added Derivatives. International Dairy Journal, 18(7), 685–694. https://doi.org/10.1016/j.idairyj.2008.03.003
Gavazzi-April, C., Benoit, S., Doyen, A., Britten, M., & Pouliot, Y. (2018). Preparation of Milk Protein Concentrates by Ultrafiltration and Continuous Diafiltration: Effect of Process Design on Overall Efficiency. Journal of Dairy Science, 101(11), 9670–9679. https://doi.org/10.3168/jds.2018-14430
Ghadipasha, N., Romagnoli, J. A., Tronci, S., & Baratti, R. (2018). A Model-Based Approach for Controlling Particle Size Distribution in Combined Cooling-Antisolvent Crystallization Processes. Chemical Engineering Science, 190, 260–272. https://doi.org/10.1016/j.ces.2018.06.032
Goulart, D. B., & Hartel, R. W. (2017). Lactose Crystallization in Milk Protein Concentrate and its Effects on Rheology. Journal of Food Engineering, 212, 97–107. https://doi.org/10.1016/j.jfoodeng.2017.05.012
Gutiérrez-Méndez, N. (2020). Lactose. In N. Gutiérrez-Méndez (Ed.), Lactose and Lactose Derivatives (1st ed.). IntechOpen. https://doi.org/10.5772/intechopen.87477
Harper, W. (1992). Lactose and Lactose Derivatives. In J. Zadow (Ed.), Whey and Lactose Processing (1st ed., pp. 336–346). Springer. https://doi.org/10.1007/978-94-011-2894-0_9
Havea, P. (2006). Protein Interactions in Milk Protein Concentrate Powders. International Dairy Journal, 16(5), 415–422. https://doi.org/10.1016/j.idairyj.2005.06.005
Hayashi, H., & Kudo, N. (1989). Effect of Viscosity on Spray Drying of Milk - Reports of Research Laboratory.
Hebbink, G., & Dickhoff, B. (2019). Application of Lactose in the Pharmaceutical Industry. In Lactose: Evolutionary Role, Health Effects, and Applications (pp. 175–229). https://doi.org/10.1016/B978-0-12-811720-0.00005-2
Herrington, B. L. (1934). Some Physico-Chemical Properties of Lactose: II. Factors Influencing the Crystalline Habit of Lactose. Journal of Dairy Science, 17(8), 533–542. https://doi.org/10.3168/jds.S0022-0302(34)93270-7
Hiemenz, P., & Rajagopalan, R. (1997). Principles of Colloid and Surface Chemistry (3rd ed.). Taylor & Francis Group.
Ho, Q. T., Murphy, K. M., Drapala, K. P., Fenelon, M. A., O’Mahony, J. A., Tobin, J. T., & McCarthy, N. A. (2019). Modelling the Changes in Viscosity During Thermal Treatment of Milk Protein Concentrate Using Kinetic Data. Journal of Food Engineering, 246, 179–191. https://doi.org/10.1016/j.jfoodeng.2018.10.026
Ho, Q. T., Murphy, K. M., Drapala, K. P., O’Callaghan, T. F., Fenelon, M. A., O’Mahony, J. A., & McCarthy, N. A. (2018). Effect of pH and Heat Treatment on Viscosity and Heat Coagulation Properties of Milk Protein Concentrate. International Dairy Journal, 85, 219–224. https://doi.org/10.1016/j.idairyj.2018.05.012
Holsinger, V. (1988). Lactose. In N. Wong, R. Jenness, M. Keeney, & E. Marth (Eds.), Fundamentals of Dairy Chemistry (3rd ed., pp. 279–342). Van Nostrand Reinhold Co.
Holsinger, V. (1997). Physical and Chemical Properties of Lactose. In Advanced Dairy Chemistry (2nd ed., pp. 1–38). Chapman & Hall.
Huffman, L. M., & Harper, W. J. (1999). Maximizing the Value of Milk Throug Separation Technologies. Journal of Dairy Science, 82(10), 2238–2244. https://doi.org/10.3168/jds.S0022-0302(99)75471-8
Hunziker, O. (1934). Condensed Milk and milk Powder (5th ed.).
Hunziker, O. F., & Nissen, B. H. (1926). Lactose Solubility and Lactose Crystal Formation: I. Lactose Solubility. Journal of Dairy Science, 9(6), 517–537. https://doi.org/10.3168/jds.S0022-0302(26)93924-6
Jawad, R., Elleman, C., Vermeer, L., Drake, A. F., Woodhead, B., Martin, G. P., & Royall, P. G. (2012). The Measurement of the Beta/Alpha Anomer Composition within Amorphous Lactose Prepared by Spray and Freeze Drying Using a Simple 1H-NMR Method. Pharmaceutical Research, 29(2), 511–524. https://doi.org/10.1007/s11095-011-0575-6
Jenness, R., & Holt, C. (1987). Casein and Lactose Concentrations in Milk of 31 Species are Negatively Correlated. Experientia, 43(9), 1015–1018. https://doi.org/10.1007/BF01952224
Kawashima, Y. (2019). Concept of Spherical Crystallization. In Spherical Crystallization as a New Platform for Particle Design Engineering (pp. 11–18). Springer, Singapore. https://doi.org/10.1007/978-981-13-6786-1_2
Knipschildt, M., & Andersen, G. (1993). Drying of Milk and Milk Products. In R. Robinson (Ed.), Modern Dairy Technology (2nd ed., p. 516). Chapman & Hall.
Le, T., Bhandari, B., & Deeth, H. (2011). Chemical and Physical Changes in Milk Protein Concentrate (MPC80) Powder During Storage. Journal of Agricultural and Food Chemistry, 59, 5465–5473. https://doi.org/10.1021/jf2003464
Lefort, R., Caron, V., Willart, J. F., & Descamps, M. (2006). Mutarotational Kinetics and Glass Transition of Lactose. Solid State Communications, 140(7–8), 329–334. https://doi.org/10.1016/j.ssc.2006.09.003
Levi, A., & Kotrla, M. (1997). Theory and Simulation of Crystal Growth. Journal of Physics: Condensed Matter, 9, 299. https://doi.org/10.1088/0953-8984/9/2/001
Li, B., Waldron, D., Tobin, J., Subhir, S., Kelly, A., & McSweeney, P. (2020). Evaluation of Production of Cheddar Cheese from Micella Casein Concentrate. International Dairy Journal, 107.
https://doi.org/10.1016/j.idairyj.2020.104711
Li, K., Woo, M. W., Patel, H., Metzger, L., & Selomulya, C. (2018). Improvement of Rheological and Functional Properties of Milk Protein Concentrate by Hydrodynamic Cavitation. Journal of Food Engineering, 221, 106–113. https://doi.org/10.1016/j.jfoodeng.2017.10.005
Listiohadi, Y., Hourigan, J., Sleigh, R., & Steele, R. (2005). Properties of Lactose and its Caking Behaviour. Australian Journal of Dairy Technology, 60(1), 33–52.
Marsh, B. (1988). Crystal Size Sistribution (CSD) in Rocks and the Kinetics and Dynamics of Crystallization. Contributions to Mineralogy and Petrology, 99, 277–291. https://doi.org/10.1007/BF00375362
Matusevich, L., & Blinova, N. (1964). Isohydric Crystallization at Different Solution Cooling Rates. Russian Journal of Applied Chemistry.
May, A. F., Yan, J., & McGuire, M. A. (2020). A Practical Guide for Crystal Growth of Van der Waals Layered Materials. Journal of Applied Physics, 128(5). https://doi.org/10.1063/5.0015971
McLeod, J., Paterson, A. H. J., Jones, J. R., & Bronlund, J. E. (2011). Primary Nucleation of Alpha-Lactose Monohydrate: The Effect of Supersaturation and Temperature. International Dairy Journal, 21(7), 455–461. https://doi.org/10.1016/j.idairyj.2011.01.006
McSweeney, P., & Fox, P., R. P. (1958). Lactose Symposium: Physical and Chemical Aspects of Lactose. Journal of Dairy Science, 41(2), 319–324. https://doi.org/10.3168/jds.S0022-0302(58)90915-9
McSweeney, P., & Fox, P. (Eds.). (2009). Advanced Dairy Chemistry - Lactose, Water, Salts and Vitamins (3rd ed.).
Springer Science+Business Media. https://doi.org/10.1007/978-0-387-84865-5
Mezger, T. (2006). The Rheology Handbook: For Users of Rotational and Oscillatory Rheometer (2nd ed.). Vincentz Network GmbH & Co.
Mi, X., Hou, Z., Li, X., Liu, H., & Guo, X. (2020). Synergistic Effect Between Organic Structure-Directing Agent and Crystal Seed Toward Controlled Morphology, and Bimodal Pore Structure of Aggregated Nanosized ZSM-5. Microporous and Mesoporous Materials, 302, 110255. https://doi.org/10.1016/j.micromeso.2020.110255
Miao, S., & Roos, Y. H. (2005). Crystallization Kinetics and X-Ray Diffraction of Crystals Formed in Amorphous Lactose, Trehalose, and Lactose/Trehalose Mixtures. Journal of Food Science, 70(5), 350–358. https://doi.org/10.1111/j.1365-2621.2005.tb09976.x
Mistry, VV. (2002). Manufacture and Application of High Milk Protein Powder. Lait, 82(4), 515–522.
https://doi.org/10.1051/lait:2002028
Mistry, V. V., & Hassan, H. N. (1991). Delactosed, High Milk Protein Powder. 1. Manufacture and Composition. Journal of Dairy Science, 74(4), 1163–1169. https://doi.org/10.3168/jds.S0022-0302(91)78269-6
Moeck, P. (2018). Towards Generalized Noise-Level Dependent Crystallographic Symmetry Classifications of More or Less Periodic Crystal Patterns. Symmetry, 10(5). https://doi.org/10.3390/sym10050133
Morrison, F. (2001). Understanding Rheology. Oxford University Press.
Mullin, J. (2001). Crystallization (4th ed.). Butterworth Heinemann.
Myerson, A., & Ginde, R. (2002). Crystal, Crystal Growth and Nucleation. In A. Myerson (Ed.), Handbook of Industrial Crystallization (2nd ed., pp. 33–63). Butterworth-Heinemann.
Nanev, C. N. (2020). Relationship Between Number and Sizes of Crystals Growing in Batch Crystallization: Nuclei Number Density, Nucleation Kinetics and Crystal Polydispersity. Journal of Crystal Growth, 546(June), 125786. https://doi.org/10.1016/j.jcrysgro.2020.125786
Nickerson, T. A. (1954). Lactose Crystallization in Ice Cream. I. Control of Crystal Size by Seeding. Journal of Dairy Science, 37(9), 1099–1105. https://doi.org/10.3168/jds.S0022-0302(54)91373-9
Nickerson, T. A. (1962). Lactose Crystallization in Ice Cream. IV. Factors Responsible for Reduced Incidence of Sandiness. Journal of Dairy Science, 45(3), 354–359. https://doi.org/10.3168/jds.S0022-0302(62)89398-9
Nickerson, T. A. (1979). Lactose Chemistry. Journal of Agricultural and Food Chemistry, 27(4), 672–677.
Nikitina, E., Ahmad Riyanto, R., Vafina, A., Yurtaeva, T., & Tsyganov, Galina Ezhkova, M. (2019). Effect of Fermented Modified Potato Starches to Low-Fat Yogurt. Journal of Food and Nutrition Research, 7(7), 549–553. https://doi.org/10.12691/jfnr-7-7-10
O’Donoghue, L. T., Haque, M. K., Kennedy, D., Laffir, F. R., Hogan, S. A., O’Mahony, J. A., & Murphy, E. G. (2019). Influence of Particle Size on the Physicochemical Properties and Stickiness of Dairy Powders. International Dairy Journal, 98, 54–63. https://doi.org/10.1016/j.idairyj.2019.07.002
Olson, I. A., Shtukenberg, A. G., Kahr, B., & Ward, M. D. (2018). Dislocations in Molecular Crystals. Reports on Progress in Physics, 81(9). https://doi.org/10.1088/1361-6633/aac303
O’Sullivan, J. J., Norwood, E. A., O’Mahony, J. A., & Kelly, A. L. (2019). Atomisation Technologies Used in Spray Drying in the Dairy Industry: A Review. Journal of Food Engineering, 243, 57–69.
https://doi.org/10.1016/j.jfoodeng.2018.08.027
Özkan, N., Walisinghe, N., & Chen, X. D. (2002). Characterization of Stickiness and Cake Formation in Whole and Skim Milk Powders. Journal of Food Engineering, 55(4), 293–303. https://doi.org/10.1016/S0260-8774(02)00104-8
Pandalaneni, K., & Amamcharla, J. K. (2018). Evaluating the Crystallization of Lactose at Different Cooling Rates From Milk and Whey Permeates in Terms of Crystal Yield and Purity. Journal of Dairy Science, 101(10), 8805–8821. https://doi.org/10.3168/jds.2018-14846
Pangborn, R., & Gee, S. (1961). Relative Sweetness of Alpha and Beta Forms of Selected Sugars. Nature, 191, 810–811. https://doi.org/10.1038/191810a0
Pangborn, R. (1963). Relative Taste Intensities of Selected Sugars and Organic Acids. Journal of Food Science, 28, 726–733.
Patel, K. N., & Nickerson, T. A. (1970). Influence of Sucrose on the Mutarotation Velocity of Lactose. Journal of Dairy Science, 53(12), 1654–1658. https://doi.org/10.3168/jds.S0022-0302(70)86458-X
Peleg, M. (2018). Temperature–Viscosity Models Reassessed. Critical Reviews in Food Science and Nutrition, 58(15), 2663–2672. https://doi.org/10.1080/10408398.2017.1325836
Rehman, S. U., Farkye, N. Y., Considine, T., Schaffner, A., & Drake, M. A. (2003). Effects of Standardization of Whole Milk with Dry Milk Protein Concentrate on the Yield and Ripening of Reduced Fat Cheddar Cheese. Journal of Dairy Science, 86(5), 1608–1615.
Rodier, L. C., & Hartel, R. W. (2021). Characterizing Maillard Reaction Kinetics and Rheological Changes in White Chocolate Over Extended Heating. Journal of Food Science, 86(6), 2553–2568. https://doi.org/10.1111/17503841.15772
Roos, Y. (2002). Importance of Glass Transition and Water Activity to Spray Drying and Stability of Dairy Powders. Lait, 82, 475–484. https://doi.org/10.1051/lait:2002025
Saxena, J., Adhikari, B., Brkljaca, R., Huppertz, T., Zisu, B., & Chandrapala, J. (2021). Influence of Lactose Pre-Crystallization on the Storage Stability of Infant Formula Powder Containing Lactose and Maltodextrin. Food Hydrocolloids, 111, 106385. https://doi.org/10.1016/j.foodhyd.2020.106385
Schuck, P., Mejean, S., Dolivet, A., Beaucher, E., & Famelart, M. (2005). Pump Amperage: A New Method for Monitoring Viscosity of Dairy Concentrates Before Spray Drying. Lait, 85, 361–367.
https://doi.org/10.1051/lait:2005014
Shah, B., McCabe, W., & Rousseau, R. (1973). Polyethlene Versus Stainless Steel Impellers for Crystallization Processes. American Institute of Chemical Engineers Journal, 19, 194.
Sherbon, J. (1988). Physical Properties of Milk. In N. Wong, R. Jenness, M. Keeney, & E. Marth (Eds.), Fundamentals of Dairy Chemistry (3rd ed., pp. 409–460). Van Nostrand Reinhold.
Shi, Y., Hartel, R. W., & Liang, B. (1989). Formation and Growth Phenomena of Lactose Nuclei under Contact Nucleation Conditions. Journal of Dairy Science, 72(11), 2906–2915. https://doi.org/10.3168/jds.S0022-0302(89)79441-8
Shi, Y., Liang, B., & Hartel, R. (2006). Crystal Refining Technologies by Controlled Crystallization (Patent No. US20060128953A1). https://patents.google.com/patent/US20060128953A1/en
Sienkiewicz, T., & Riedel, C. (1990). Whey and Whey Utilization (2nd ed.). Verlag Th Mann GmbH.
Sikand, V., Tong, P. S., Roy, S., Rodriguez-Saona, L. E., & Murray, B. A. (2011). Solubility of Commercial Milk Protein Concentrates and Milk Protein Isolates. Journal of Dairy Science, 94(12), 6194–6202. https://doi.org/10.3168/jds.2011-4477
Smart, J., Haylock, S., & Gordon, M. (1991). Lactose - An Underutilized Food Ingredient. Food Australia, 43(9), 386–388.
Smith, K., Mittal, G., & Griffiths, M. (2006). Pasteurization of Milk Using Pulsed Electrical Field and
Antimicrobials. Journal of Food Science, 67(6), 2304–2308. https://doi.org/10.1111/j.1365-2621.2002.tb09545.x
Smithers, G., & Augustin, M. (2013). Advances In Dairy Ingredients (1st ed.). Wiley-Blackwell.
https://doi.org/10.1002/9781118448205
Snoeren, T., Damman, A., & Klok, H. (1982). The Viscosity of Skim Milk Concentrates. Netherlands Milk and Dairy Journal, 36, 305–316.
Taibi, H., & Messelmi, F. (2018). Effect of Yield Stress on the Behavior of Rigid Zones During the Laminar Flow of Herschel-Bulkley Fluid. Alexandria Engineering Journal, 57(2), 1109–1115. https://doi.org/10.1016/j.aej.2017.01.001
Tan, R. (2009). Manufacture of Sweetened Condensed Milk and the Significance of Lactose Therein. In Advanced Dairy Chemistry - Lactose, Water, Salts and Minor Constituents (3rd ed., pp. 36–57). Springer.
Teixeira, G., Malagoni, R., Gonçalves, R., & Finzer, J. (2020). Study of Lactose Crystallization in a Vibrated Bed with High Seeding through a Central Composite Design. Research, Society and Development, 9(8). https://doi.org/10.33448/rsd-v9i8.5734
Toledo, R. (1991). Fundamentals of Food Process Engineering (3rd ed.). Springer US.
Troy, H., & Sharp, P. (1930). Alpha and Beta Lactose in Some Milk Products. Journal of Dairy Science, 13, 140–157
Urashima, T., Katayama, T., Sakanaka, M., Fukuda, K., & Messer, M. (2021). Evolution of Milk Oligosaccharides: Origin and Selectivity of the Ratio of Milk Oligosaccharides to Lactose Among Mammals. Biochimica et Biophysica Acta (BBA)-General Subjects, 1866(1). https://doi.org/10.1016/j.bbagen.2021.130012
Van Kreveld, A. (1969). Growth Rates of Lactose Crystals in Solutions of Stable Anhydrous Alpha-Lactose. Netherlands Milk and Dairy Journal, 23, 258–275.
Van Kreveld, A., & Michaels, A. S. (1965). Measurement of Crystal Growth of Alpha-Lactose. Journal of Dairy Science, 48, 259–265.
Walstra, P., Geurts, T., Noomen, A., Jellema, A., & Boekel, M. (1999). Dairy Technology - Principles of Milk Properties and Processes (1st ed.). Marcel Dekker, Inc. https://doi.org/10.1201/9780824746414
Walstra, P., Geurts, T., Noomen, A., Jellema, A., & Boekel, M. (2001). Ciência de la Leche y Tecnología de los Produtos Lácteos. Acribia.
Wong, S. Y., Bund, R. K., Connelly, R. K., & Hartel, R. W. (2011). Determination of the Dynamic Metastable Limit for Alpha-Lactose Monohydrate Crystallization. International Dairy Journal, 21(11), 839–847. https://doi.org/10.1016/j.idairyj.2011.05.003
Xiang, J., Liu, F., Wang, B., Chen, L., Liu, W., & Tan, S. (2021). A Literature Review on Maillard Reaction Based on Milk Products : Advantages, Disadvantages, and Avoidance Strategies. MDPI Foods, 10. https://doi.org/10.3390/foods10091998
Xu, S., Wang, Y., Hou, Z., & Chuai, X. (2020). Overview of Secondary Nucleation: From Fundamentals to Application. Industrial and Engineering Chemistry Research, 59(41), 18335–18356. https://doi.org/10.1021/acs.iecr.0c03304
Zhang, F., Mohammadi, E., Luo, X., Strzalka, J., Mei, J., & Diao, Y. (2018). Critical Role of Surface Energy in Guiding Crystallization of Solution-Coated Conjugated Polymer Thin Films. Langmuir, 34(3), 1109–1122. https://doi.org/10.1021/acs.langmuir.7b02807
Zhang, J., Liu, D., Liu, Y., Yu, Y., Hemar, Y., Regenstein, J., & Zhou, P. (2020). Effects of Particle Size and Aging of Milk Protein Concentrate on the Biophysical Properties of an Intermediate-Moisture Model Food System. Food Bioscience, 37. https://doi.org/10.1016/j.fbio.2020.100698
Zhang, Y., Munir, M. T., Udugama, I., Yu, W., & Young, B. R. (2018). Modelling of a Milk Powder Falling Film Evaporator for Predicting Process Trends and Comparison of Energy Consumption. Journal of Food Engineering, 225, 26–33. https://doi.org/10.1016/j.jfoodeng.2018.01.016
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Débora Brito Goulart
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.