Relações entre Regimes de Fertilização do Solo, Propriedades Químicas e Produtividade de Grãos de Milho no Trópico Úmido

Autores

DOI:

https://doi.org/10.33448/rsd-v10i16.23558

Palavras-chave:

Fertilizantes; Macronutrientes; Manejo verde.

Resumo

Nossa hipótese é de que existe uma relação entre diferentes regimes de fertilização do solo, atributos químicos do solo e rendimento de grãos de milho. Nosso objetivo foi avaliar as relações entre diferentes regimes de fertilização do solo, propriedades químicas do solo e rendimento de grãos de milho. O experimento foi realizado no Nordeste do Brasil, utilizando o delineamento em blocos casualizados, em uma área dividida em 24 parcelas com seis tratamentos e quatro repetições (Nitrogênio (N); Leucena (L); Nitrogênio+Leucena (N+L); Ácido Húmico+Leucena (HA+L); Ácido Húmico+Nitrogênio (HA+N) e Ácido Húmico+Nitrogênio+Leucena (HA+N+L)). Cada parcela foi cultivada com milho (Zea mays L.) e estimou-se a produtividade de grãos. Amostras de solo foram coletadas em profundidades de 0–5 cm, 5–10 cm e 10–20 cm. Foram determinados a acidez potencial, pH, carbono orgânico do solo (SOC), fósforo disponível, potássio trocável, cálcio e magnésio, capacidade de troca catiônica (CEC), soma de cátions básicos (SBC) e saturação por bases (BS). A análise de componentes principais (PCA) foi utilizada para correlacionar os atributos químicos do solo com a produtividade do milho. Cálcio, magnésio, P disponível e SBC estavam associados ao rendimento de grãos de milho na camada superior do solo, especialmente na fertilização com nitrogênio. Esta pesquisa confirma a hipótese de que existe uma relação entre os diferentes regimes de fertilização do solo, propriedades do solo e rendimento de grãos de milho.

Referências

Abreu Jr., C. H., Muraoka, T. & Lavorante, A. F. (2003). Relationship between acidity and chemical properties of Brazilian soils. Scientia Agricola, 60(2), 337–343. doi: 10.1590/S0103-90162003000200019.

Adepetu, J. A. (1983). Phosphorus fertilization of tropical crops. In Nutrients Supply to Tropical Crops, 21–288 (Eds Mutscher and Franke). Institute of Trop. Agric, Leipzig Publ.: https://scholar.google.com/scholar_lookup?hl=en&publicationyear=1983&pages=211-238&author=J.+A.+Adepetu&title=+Nutrient+supply+to+ tropical+crops+.

Afolayan, E. T. & Oyetunji, J. O. (2018). Influence of Arbuscular Mycorrhizal Fungi, Green Manure of Leucaena leucocephala and Gliricidia sepium on the Yield of White Yam (Dioscorea rotundata) and Soil Bioremediation in the Abandoned Quarry. Agricultural Extension Journal, 2(1), 51–54. http://www.aextj.com/index.php/aextj/article/view/60/40.

Aguiar, A. C. F., Souza, E. A., Cardoso-Silva, A. J. & Moura, E. G. (2019). How leguminous biomass can increase yield and quality of maize grain in tropical agrosystems. Legume Research, 1–7. doi: 10.18805/LR-380.

Allaway, W. H. (1957). pH, soil acidity and plant growth. In Soil The Yearbook of Agriculture, 67–71 (Ed. A. Stefferud). Washington: USDA. https://naldc.nal.usda.gov/download/IND43894850/PDF.

Anh, P. T. Q., Gomi, T., MacDonald, L. H., Mizugaki, S., Khoa, P. V. & Furuichi, T. (2014). Linkages among land use, macronutrient levels, and soil erosion in northern Vietnam: A plot-scale study. Geoderma, 232–234(6), 352–362. doi: 10.1016/j.geoderma.2014.05.011.

Arif, M., Ali, K., Jan, M. T., Shah, Z., Jones, D. L. & Quilliam, R. S. (2016). Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crop Research, 195, 28–35. doi: 10.1016/j.fcr.2016.05.011.

Bruun, T. B., Mertz, O. & Elberling, B. (2006). Linking yields of upland rice in shifting cultivation to fallow length and soil properties. Agriculture, Ecosystems and Environment, 113, 139–149. doi: 10.1016/j.agee.2005.09.012.

Cakmak, I. (2002). Plant and Soil, 247(1), 3–24. doi: 10.1023/A:1021194511492.

Carvalho, A. M., Marchão, R. L., Souza, K. W. & Bustamante, M. M. C. (2014). Soil fertility status, carbon and nitrogen stocks under cover crops and tillage regimes. Revista Ciência Agronômica, 45(5), 914–921. http://ccarevista.ufc.br/seer/index.php/ccarevista/article/view/3505/1053.

Cronk, J. K. & Fennessy, M. S. (2001). Wetland Plants: Biology and Ecology. Boca Raton: Lewis. doi: 10.1201/9781420032925.

Davenport, J. R., DeMoranville, C. J., Hart, J., Kumidini, S., Patten, K., Poole, A. & Roper, T. R. (2003). Spatial and temporal variability of cranberry soil pH. Acta Horticulturae, 626(44), 315–327. doi: 10.17660/ActaHortic.2003.626.44.

Delarmelinda, E. A., Sampaio, F. A. R., Dias, J. R. M., Tavella, L. B. & Silva, J. S. (2010). Green manure and changes on chemical characteristics of a soil in the Ji-Paraná-RO region. Acta Amazonica, 40(3), 625–628. doi: 10.1590/S0044-59672010000300024.

Dobbss, L. B., Rumjaneck, V. M., Baldotto, M. A., Velloso, A. C. X. & Canellas, L. P. (2009). Caracterização química e espectroscópica de ácidos húmicos e fúlvicos isolados da camada superficial de latossolos brasileiros. Revista Brasileira de Ciência do Solo, 33(1), 51–63. doi: 10.1590/S0100-06832009000100006.

Ehrenfeld, J. G., Ravit B. & Elgersma, K. (2005). Feedback in the plant-soil system. Annual Review of Environment and Resources, 30(1), 75–115. doi: 10.1146/annurev.energy.30.050504.144212.

Franzluebbers, A. J. & Hons, F. M. (1996). Soil-profile distribution of primary and secondary plant available nutrients under conventional and no tillage. Soil Tillage and Research, 39, 229–239. doi: doi.org/10.1016/S0167-1987(96)01056-2.

Gai, X., Liu, H., Zhai, L., Tan, G., Liu, J., Ren, T. & Wang, H. (2016). Vegetable yields and soil biochemical properties as influenced by fertilization in Southern China. Applied Soil Ecology, 107, 170–181. doi: 10.1016/j.apsoil.2016.06.001.

Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., Christie, P., Goulding, K. W. T., Vitousek, P. M. & Zhang, F. S. (2010). Significant acidification in major chinese croplands. Science, 327(5968), 1008–1010. doi: 10.1126/science.1182570.

Li, Y., Li, Z., Cui, S., Chang, S. X., Jia, C. & Zhang, Q. (2019). A global synthesis of the effect of water and nitrogen input on maize (Zea mays) yield, water productivity and nitrogen use efficiency. Agricultural and Forest Meteorology, 268(11), 136–145. doi: 10.1016/j.agrformet.2019.01.018.

Lorenz, K. & Lal, R. (2005). The Depth Distribution of Soil Organic Carbon in Relation to Land Use and Management and the Potential of Carbon Sequestration in Subsoil Horizons. Advances in Agronomy, 88, 35–66. doi: 10.1016/S0065-2113(05)88002-2.

Lupwayi, N. Z. & Haque, I. (1998). Mineralization of N, P, K, Ca and Mg from Sesbania and Leucaena leaves varying in chemical composition. Soil Biology & Biochemistry, 30(3), 337–343. doi: 10.1016/S0038-0717(97)00132-6.

Maathuis, F. J. M. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258. doi: 10.1016/j.pbi.2009.04.003.

Maharjan, M., Maranguit, D. & Kuzyakov, Y. (2018). Phosphorus fractions in subtropical soils depending on land use. European Journal of Soil Biology, 87, 17–24. doi: 10.1016/j.ejsobi.2018.04.002.

Martins, A. L. P., Siqueira, G. M., Moura, E. G., Silva, R. A., Silva, A. J. C. & Aguiar, A. C. F. (2018). Associations between different soil management practices, soil fauna and maize yield. Journal of Agricultural Science, 10(9), 333–343. doi: 10.5539/jas.v10n9p333.

Milić, S., Ninkov, J., Zeremski, T., Latković, D., Šeremešić, S., Radovanović, V. & Žarković, B. (2019). Soil fertility and phosphorus fractions in a calcareous chernozem after a long-term field experiment. Geoderma, 339, 9–19. doi: 10.1016/j.geoderma.2018.12.017.

Mindari, W., Aini, N., Kusuma, Z. & Syekhfani, S. (2014). Effects of humic acid-based buffer + cation on chemical characteristics of saline soils and maize growth. Journal of Degraded Andmining Landsmanagement, 2(1), 259–268. doi: 10.15243/jdmlm.2014.021.259.

Morar, F. & Peterlicean, A. (2014). Studies and research regarding the main macronutrients content of some Mureș county soils. Procedia Technology, 12, 609–614. doi: 10.1016/j.protcy.2013.12.537.

Moreira, A. & Fageria, N. K. (2009). Soil Chemical Attributes of Amazonas State, Brazil. Communications in Soil Science and Plant Analysis, 40(17-18), 1–14. doi: 10.1080/00103620903175371.

Morgan, J. B. & Connolly, E. L. (2013). Plant-Soil Interactions: Nutrient Uptake. Nature Education Knowledge, 4(8), 2. https://www.nature.com/scitable/knowledge/library/plant-soil-interactions-nutrient-uptake-105289112.

Moura, E. G. de, Silva, A. J. de F., Furtado, M. B. & Aguiar, A. das C. F. (2008). Avaliação de um sistema de cultivo em aléias em um argissolo franco-arenoso da região amazônica. Manejo e conservação do solo e da água, Revista Brasileira de Ciência do Solo, 32(4), 1735–1742. https://doi.org/10.1590/S0100-06832008000400038.

Moura, E. G., Moura, N. G., Marques, E. S., Pinheiro, K. M., Sobrinho, J. R. S. C. & Aguiar, A. C. F. (2009). Evaluating chemical and physical quality indicators for a structurally fragile tropical soil. Soil Use and Management, 25(4), 368–375. doi: 10.1111/j.1475-2743.2009.00238.x.

Mugendi, D. N., Nair, P. K. R., Mugwe, J. N., O’Neill, M. K. & Woomer, P. L. (1999). Alley cropping of maize with calliandra and leucaena in the subhumid highlands of Kenya. Part 1. Soil-fertility changes and maize yield. Agroforestry Systems, 46, 39–50. https://link.springer.com/article/10.1023/A:1006288301044.

Onasanya, R. O., Aiyelari, O. P., Onasanya, A., Oikeh, S., Nwilene, F. E., Oyelakin, O. O. (2009). Growth and Yield Response of Maize (Zea mays L.) to Different Rates of Nitrogen and Phosphorus Fertilizers in Southern Nigeria. World Journal of Agricultural Sciences, 5(4), 400–407. doi: https://pdfs.semanticscholar.org/ec32/5c9cdc804a04026cedca1a4efdbf603eeecb.pdf.

Ordóñez-Fernández, R., Torres, M. A. R., Román-Vázquez, J., González-Fernández, P. & Carbonell-Bojollo, R. (2015). Macronutrients released during the decomposition of pruning residues used as plant cover and their effect on soil fertility. Journal of Agricultural Science, 153(4), 615–630. doi: 10.1017/S0021859614000458.

Qiang, S., Zhang, Y., Fan, J., Zhang, F., Xiang, Y., Yan, S. & Wu, Y. (2019). Maize yield, rainwater and nitrogen use efficiency as affected by maize genotypes and nitrogen rates on the Loess Plateau of China. Agricultural Water Management, 213(C), 996–1003. doi: 10.1016/j.agwat.2018.12.021.

Raij, B. V., Andrade, J. C., Cantarella, H. & Quaggio, J. A. (2001). Análise química para avaliação da fertilidade de solo tropicais. Campinas: Instituto Agronômico.

Salvagiotti, F., Prystupa, P., Ferraris, G., Couretot, L., Magnano, L., Dignani, D. & BGutiérrez-Boemoem, F. H. G. (2017). N:P:S stoichiometry in grains and physiological attributes associated with grain yield in maize as affected by phosphorus and sulfur nutrition. Field Crops Research, 203, 128–138. doi: 10.1016/j.fcr.2016.12.019.

Shukla, A., Vyas, D. & Jha, A. (2013). Soil depth: an overriding factor for distribution of arbuscular mycorrhizal fungi. Journal of Soil Science and Plant Nutrition, 13(1), 23–33. doi: 10.4067/S0718-95162013005000003.

Soil Survey Staff. (2010). Keys to Soil Taxonomy. 11ed. Washington: USDA-Natural Resources Conservation Service.

Statsoft Inc. (2004). Statistica (version 7). Tusla, USA.

Wang, Z. H., Li, S. X. & Malhi, S. (2008). Effects of fertilization and other agronomic measures on nutritional quality of crops. Journal of the Science of Food and Agriculture, 88, 7–23. doi: 10.1002/jsfa.3084.

Yang, S., Cammeraat, E., Jansen, B., Haan, M. den, Loon, E. van & Recharte, J. (2018). Peruvian alpine grassland of the Andes. Catena, 171, 11–21. doi: 10.1016/j.catena.2018.06.038.

Yang, X., Lu, Y., Ding, Y., Yin, X., Raza, S. & Tong, Y. (2017). Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crops Research, 206(C), 1–10. doi: 10.1016/j.fcr.2017.02.016.

Zhang, W., Chen, X. X., Liu, Y. M., Liu, D. Y., Du, Y. F., Chen, X. P. & Zou, C. Q. 2018. The role of phosphorus supply in maximizing the leaf area, photosynthetic rate, coordinated to grain yield of summer maize. Field Crops Research, 219, 113–119. doi: 10.1016/j.fcr.2018.01.031.

Zhong, Z., Huang, X., Feng, D., Xing, S. & Weng, B. (2018). Long-term effects of legume mulching on soil chemical properties and bacterial community composition and structure. Agriculture, Ecosystems and Environment, 268, 24–33. doi: 10.1016/j.agee.2018.09.001.

Downloads

Publicado

14/12/2021

Como Citar

FEITOSA, A. L. P. M. .; SIQUEIRA, G. M.; MOURA, E. G. de; FARIAS , F. F. .; AGUIAR, A. das C. F. . Relações entre Regimes de Fertilização do Solo, Propriedades Químicas e Produtividade de Grãos de Milho no Trópico Úmido. Research, Society and Development, [S. l.], v. 10, n. 16, p. e366101623558, 2021. DOI: 10.33448/rsd-v10i16.23558. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23558. Acesso em: 17 jul. 2024.

Edição

Seção

Ciências Agrárias e Biológicas