Análisis de series de tiempo de la información del gobierno sobre COVID-19 en las redes sociales y el número de nuevos casos durante los primeros 6 meses de la pandemia: el caso de Brasil

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i16.23797

Palabras clave:

COVID-19; Comunicación en salud; Educación en salud; Acceso a la información; Red social.

Resumen

Este estudio retrospectivo buscó evaluar la asociación entre la evolución de la pandemia COVID-19 en Brasil y la calidad de los materiales educativos publicados en Instagram de las agencias de salud del gobierno brasileño. Las publicaciones sobre COVID-19, entre el 31 de enero y el 15 de agosto de 2021, fueron seleccionadas, fechadas, cuantificadas y clasificadas según su contenido por tres investigadores. La participación de la audiencia se calculó por la cantidad de me gusta, comentarios y vistas. La calidad de las publicaciones educativas fue evaluada por dos investigadores capacitados y calibrados (Kappa intra e inter-examinadores, k= 0.96 y k= 0.92, respectivamente), utilizando la versión brasileña del Clear Communication Index (BR-CDC-CCI), El número de casos nuevos de COVID-19 se recopilo en el sitio web https://covid-calc.org/. La asociación entre la evolución del indicador COVID-19 y la calidad de las publicaciones educativas se calculó mediante el modelo estadístico de uma serie temporal quincenal. En promedio, publicaciones educativas alcanzaron 6,4 en la puntuación BR-CDC-CCI (mediana = 6,5). En el modelo múltiple ajustado por la cantidad de publicaciones y la participación de la audiencia, se observó que por cada aumento de un punto en la puntuación BR-CDC-CCI, hubo una reducción de 327,864 nuevos casos (p< 0,001). Se concluye que existía una relación entre la baja calidad de publicaciones educativas y el mayor número de nuevos casos. Las agencias de salud del gobierno brasileño deben estar atentas de la calidad de información disponible en las redes sociales para ayudar a controlar la pandemia de COVID-19.

Citas

Brazil. (1988). Constituição da República Federativa do Brazil (Senado Federal).

Centers for Disease Control and Prevention. (2009, April). Simply put; a guide for creating easy-to-understand materials (3rd ed.). https://stacks.cdc.gov/view/cdc/11938

Centers for Disease Control and Prevention. (2010). National Action Plan to Improve Health Literacy | Health Literacy. https://www.cdc.gov/healthliteracy/planact/national.html

Centers for Disease Control and Prevention. (2019). CDC clear communication index : a tool for developing and assessing CDC public communication products : user guide. https://stacks.cdc.gov/view/cdc/107490

COVID-19 in Brazil: “So what?” [Editorial]. (2020, May 9). The Lancet, 395(10235), 1461. https://doi.org/10.1016/S0140-6736(20)31095-3

Daraz, L., Morrow, A., Ponce, O., Farah, W., Katabi, A., Majzoub, A., Seisa, M., Benkhadra, R., Alsawas, M., Larry, P., & Murad, M. (2018). Readability of Online Health Information: A Meta-Narrative Systematic Review. American Journal of Medical Quality : The Official Journal of the American College of Medical Quality, 33(5), 487–492. https://doi.org/10.1177/1062860617751639

de Melo Cunha, M. A. G., Lino, P. A., Dos Santos, T. R., Vasconcelos, M., Lucas, S. D., & de Abreu, M. H. N. G. (2015). A 15-year time-series study of tooth extraction in Brazil. Medicine, 94(47).

Fleary, S., Joseph, P., & Pappagianopoulos, J. (2018). Adolescent health literacy and health behaviors: A systematic review. Journal of Adolescence, 62, 116–127. https://doi.org/10.1016/J.ADOLESCENCE.2017.11.010

Garcia, P., Fera, J., Mohlman, J., & Basch, C. H. (2021). Assessing the Readability of COVID-19 Testing Messages on the Internet. Journal of Community Health, 46, 913-917. https://doi.org/10.1007/S10900-021-00973-6

Geboers, B., Reijneveld, S., Jansen, C., & de Winter, A. (2016). Health Literacy Is Associated With Health Behaviors and Social Factors Among Older Adults: Results from the LifeLines Cohort Study. Journal of Health Communication, 21(sup2), 45–53. https://doi.org/10.1080/10810730.2016.1201174

Johns Hopkins University & Medicine. Coronavirus Resource Center.(2021). COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/map.html

Korda, H., & Itani, Z. (2013). Harnessing social media for health promotion and behavior change. Health Promotion Practice, 14(1), 15–23. https://doi.org/10.1177/1524839911405850

Levin-Zamir D, Bertschi I. (2018) Media Health Literacy, eHealth Literacy, and the Role of the Social Environment in Context. Int J Environ Res Public Health, 15(8), 1643. https://doi.org/10.3390/ijerph15081643.

Limaye, R., Sauer, M., Ali, J., Bernstein, J., Wahl, B., Barnhill, A., & Labrique, A. (2020). Building trust while influencing online COVID-19 content in the social media world. The Lancet. Digital Health, 2(6), e277–e278. https://doi.org/10.1016/S2589-7500(20)30084-4

Liu, Y., Liu, L., Li, Y., & Chen, Y. (2015). Relationship between Health Literacy, Health-Related Behaviors and Health Status: A Survey of Elderly Chinese. International Journal of Environmental Research and Public Health, 12(8), 9714–9725. https://doi.org/10.3390/IJERPH120809714

Loeb, S., Taylor, J., Borin, J., Mihalcea, R., Perez-Rosas, V., Byrne, N., Chiang, A. L., & Langford, A. (2020). Fake News: Spread of Misinformation about Urological Conditions on Social Media. European Urology Focus, 6(3), 437–439. https://doi.org/10.1016/J.EUF.2019.11.011

Marinho, A., Faur, C., Ferreira, F., Borges-Oliveira, A., & Abreu, M. (2020). Cross-cultural adaptation of the Clear Communication Index to Brazilian Portuguese. Revista de Saude Publica, 54(26). https://doi.org/10.11606/S1518-8787.2020054001561

McClure, E., NG, J., Vitzthum, K., & Rudd, R. (2016). A Mismatch Between Patient Education Materials About Sickle Cell Disease and the Literacy Level of Their Intended Audience. Preventing Chronic Disease, 13(5). https://doi.org/10.5888/PCD13.150478

Pang, P., Cai, Q., Jiang, W., & Chan, K. (2021). Engagement of Government Social Media on Facebook during the COVID-19 Pandemic in Macao. International Journal of Environmental Research and Public Health, 18(7), 3508. https://doi.org/10.3390/IJERPH18073508

Park, C.L., Russell, B.S., Fendrich, M., Finkelstein-Fox, L., Hutchison, M., Becker, J. (2020) Americans' COVID-19 Stress, Coping, and Adherence to CDC Guidelines. J Gen Intern Med , 35(8), 2296-2303. https://doi.org/0.1007/s11606-020-05898-9.

R Core Team. (2020). R: The R Project for Statistical Computing. (Version 4.0.3) [Computer Software]. https://www.r-project.org/

Roberts, M., Callahan, L., & O’Leary, C. (2017). Social Media: A Path to Health Literacy . Stud Health Technol Inform, 240, 464–475. https://pubmed.ncbi.nlm.nih.gov/28972534/

Schillinger, D., Chittamuru, D., & Ramírez, A. S. (2020). From “Infodemics” to Health Promotion: A Novel Framework for the Role of Social Media in Public Health. American Journal of Public Health, 110(9), 1393. https://doi.org/10.2105/AJPH.2020.305746

Sørensen, K., Pelikan, J., Röthlin, F., Ganahl, K., Slonska, Z., Doyle, G., Fullam, J., Kondilis, B., Agrafiotis, D., Uiters, E., Falcon, M., Mensing, M., Tchamov, K., van den Broucke, S., Brand, H., HLS-EU Cosortium. (2015). Health literacy in Europe: comparative results of the European health literacy survey (HLS-EU).

European Journal of Public Health, 25(6), 1053–1058. https://doi.org/10.1093/EURPUB/CKV043

Shumway, R. H. & Stoffer, D. S. (2010). Time series analysis and its applications (Vol. 3). New York: springer.

Takla M, Jeevaratnam K. (2020) Chloroquine, hydroxychloroquine, and COVID-19: Systematic review and narrative synthesis of efficacy and safety. Saudi Pharm J, 28(12), 1760-1776. https://doi.org/10.1016/j.jsps.2020.11.003.

United States Government. (2010). An act to enhance citizen access to Government information and services by establishing that Government documents issued to the public must be written clearly, and for other purposes. https://www.govinfo.gov/content/pkg/PLAW-111publ274/html/PLAW-111publ274.htm

Wardle, C., & Derakhshan, H. (2017). Information disorder: Toward an interdisciplinary framework for research and policy making. Council of Europe. https://edoc.coe.int/en/media/7495-information-disorder-toward-an-interdisciplinary-framework-for-research-and-policy-making.html

Wojtowicz, A. (2020). Addressing Health Misinformation with Health Literacy Strategies: Proceedings of a Workshop—in Brief. National Academies of Sciences, Engineering, and Medicine. Washington, DC: The National Academies Press. https://doi.org/10.17226/26021

World Health Organization. (2020). 1st WHO Infodemiology Conference. How infodemics affect the world & how it can be managed. https://www.who.int/news-room/events/detail/2020/06/30/default-calendar/1st-who-infodemiology-conference

Descargas

Publicado

17/12/2021

Cómo citar

SILVA, L. da .; MARINHO, A. M. C. L.; BRAGA, N. S. .; SANTOS , T. R. dos; ABREU, M. H. N. G. de .; ASSUNÇÃO, C. M.; FERREIRA , F. M. Análisis de series de tiempo de la información del gobierno sobre COVID-19 en las redes sociales y el número de nuevos casos durante los primeros 6 meses de la pandemia: el caso de Brasil. Research, Society and Development, [S. l.], v. 10, n. 16, p. e501101623797, 2021. DOI: 10.33448/rsd-v10i16.23797. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/23797. Acesso em: 25 nov. 2024.

Número

Sección

Ciencias de la salud