Instrumentación aplicada en máquinas agrícolas: revisión sistemática de la literatura

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i17.24247

Palabras clave:

Agricultura; Agricultura de precisión; Instrumentación agrícola; Máquinas agrícolas.

Resumen

Para analizar las publicaciones sobre el uso de la instrumentación en la agricultura, el objetivo de este trabajo es presentar un conjunto de trabajos publicados entre 2017 y 2021 sobre el tema para que se pueda realizar un análisis de las tecnologías desarrolladas durante este período. Para ello, se realizó una búsqueda en las bases de datos IEEE, Science Direct y Scopus, donde se encontraron 1490 artículos publicados utilizando una cadena de búsqueda para seleccionar artículos considerando tema, año de publicación. Ante este resultado, se utilizó el software Start para aplicar criterios de selección para elegir los artículos a utilizar en la revisión. Después de realizar todos los pasos de selección de trabajos en el software, el resultado fue 33 artículos realizando la Revisión Sistemática. De los 33 artículos, se presentan los métodos de trabajo y el resultado obtenido por el autor, lo que permite un análisis de las tecnologías investigadas durante el período de estudio.

Citas

AzmI, M. A. Mohammad, R. & Pebrian, D. E. (2020). Evaluation Of Soil EC Mapping Driven By Manual And Autopilot-Automated Steering Systems Of Tractor On Oil Palm Plantation Terrain, Food Research, 4(5), 62 – 69.

Conforto, E.C. Amaral, D.C. & Silva, S.L. (2011). Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projeto. In: Congresso Brasileiro De Gestão De Desenvolvimento De Produto – CBGDP, 8, Anais... Porto Alegre, RS.

Dusadeerungsikul, P. O. & NOF, S. Y. (2019). A collaborative control protocol for agricultural robot routing with online adaptation, Computers Industrial Engineering, 135, 456-466.

Espejo, G. B. Martinez, G. J. Pérez, R. M. Lopez, P. F.J. & Javier, Z. F. (2018). Machine learning for automatic rule classification of agricultural regulations: a case study in Spain. Comput Electron Agric. 150: 343–352.

Gupta, C. Tewari, V.K. Kumar, A. A. & Shrivastava, P. (2019). Automatic tractor slip-draft embedded control system, Computers and Electronics in Agriculture, 165.

Han, X. Kim, H. Jeon, C. W. Moon, H. C. Kim, J. H. & Yi, S. Y. (2019). Application of a 3D tractor-driving simulator for slip estimation-based path-tracking control of auto-guided tillage operation, Biosystems Engineering, 178, 70-85.

Inoue, K. Kaizu, Y. Igarashi, S. & Imou, K. (2019). The development of autonomous navigation and obstacle avoidance for a robotic mower using machine vision technique, IFAC-PapersOnLine, 52(30), 173-177.

İrsel, G. M.; & Altinbalik, T. (2018). Adaptation of tilt adjustment and tracking force automation system on a laser-controlled land leveling machine, Computers and Electronics in Agriculture, 150, 374-386.

Kim, J. Kim, S. Ju, C. & Son, H. I. (2019). Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications, IEEE Access, 7, 105100-105115.

Kim, Y Chung, S., & Choi, C.H. (2018). Development of automation technology for manual transmission of a 50 HP autonomous tractor. IFAC-PapersOnLine. 51. 20-22.

Kumar, A. A. Tewari, V.K. Nare, B. Chetan, C.R. Srivastava, P. & Kumar, S. P. (2017). Embedded Digital Drive Wheel Torque Indicator For Agricultural 2WD Tractors. Computers and electronics in agriculture, 139, 91-102.

Lee, J. Kim, H. Cho, B Choi, J., & Kim, Y. (2018). Road Bump Detection Using LiDAR sensor for Semi-Active Control of Front Axle Suspension in an Agricultural Tractor. IFAC-PapersOnLine. 51, 124-129.

Li, S. Xu, H. Ji, Y. Cao, R Zhang, M. & Li, H. (2019). Development of a following agricultural machinery automatic navigation system, Comput. Electron. Agricult., 158, 335-344.

Lu, W. Wei, Y. Yuan, J. Deng, Y. & Song, A. (2020). Tractor Assistant Driving Control Method Based on EEG Combined With RNN-TL Deep Learning Algorithm, IEEE Access, 8, 163269-163279.

Mccool, C. S. Perez, T. & Upcroft, B. (2017). Mixtures of Lightweight Deep Convolutional Neural Networks: Applied to Agricultural Robotics, IEEE Robotics and Automation Letters. 2, 1344-1351.

Mattetti, M. Molari, G. & Sereni, E. (2017). Damage Evaluation Of Driving Events For Agricultural Tractors. Computers and Electronics in Agriculture, 135, 328–337.

Mattetti, M. Maraldi, M. Lenzini, N. Fiorati, S. Sereni. E. & Molari, G. (2021). Outlining the mission profile of agricultural tractors through CAN-BUS data analytics, Computers and Electronics in Agriculture, 184, 106078.

Mattetti, M Maraldi, M Sedoni, E., & Molari, G. (2019). Optimal criteria for durability test of stepped transmissions of agricultural tractors, Biosystems Engineering, 178, 145-155.

ONU. (2021). Objetivos de Desenvolvimento Sustentável (ODS), Pacto Global, Disponível em: https://www.pactoglobal.org.br/ods.

Pasternak, G. Greenman, J. & Ieropoulos, I. (2017). Self-Powered, Autonomous Biological Oxygen Demand Biosensor For Online Water Quality Monitoring. Sensors Actuators B Chemical. 244, 815-822.

Perz, R. & Wronowski, K. (2018). UAV application for precision agriculture, Aircraft Engineering and Aerospace Technology, 91, 257-263.

Rajabi-Vandechali, M. Abbaspour-Fard, M. & Rohani, A. (2018). Development of a prediction model for estimating tractor engine torque based on soft computing and low cost sensors. Measurement. 121, 83-95.

Rajkumar, S. Arun M. Hirwani, J. & Sanjeev, S. (2018). Predictive analysis of crops cultivation for a smart green environment using azure services. International Journal of Recent Technology and Engineering (IJRTE). 7, 295-298.

Raikwar, S. Wani, L. J. Kumar, S. A. & Rao, M. S. (2019). Hardware-in-the-Loop test automation of embedded systems for agricultural tractors, Measurement, 133, 271-280.

Ranjbarian, S.; Askari, M.; & Jannatkhah, J. (2017) Performance of tractor and tillage implements in clay soil. Journal of the Saudi Society of Agricultural Sciences, 16(2), 154-162.

Shafaei, S.M. Loghavi, M. & Kamgar, S. (2019). A practical effort to equip tractor-implement with fuzzy depth and draft control system, Engineering in Agriculture, Environment and Food, 12(2), 191-203.

Shafaei, S.M. Loghavi, M. & Kamgar, S. (2020). Benchmark of an intelligent fuzzy calculator for admissible estimation of drawbar pull supplied by mechanical front wheel drive tractor, Artificial Intelligence in Agriculture, 4, 209-218.

Soylu, S. Çarman, K. (2021). Fuzzy logic based automatic slip control system for agricultural tractors, Journal of Terramechanics, 95, 25-32.

Spykman, O. Gabriel, A. Ptacek, M. & Gandorfer, M. (2021). Farmers’ perspectives on field crop robots – Evidence from Bavaria, Germany, Computers and Electronics in Agriculture, 186, 106176.

Sulistyo, S.B. Wu, D. Woo, W.L. Dlay, S. S. & Gao, B. (2017). Computational Deep Intelligence Vision Sensing For Nutrient Content Estimation In Agricultural Automation. IEEE Transactions on Automation Science and Engineering, 15, 1243-1257.

Tufail, M. Iqbal, J. Tiwana, M. I. Alam, M. S. Khan, Z. A. & Khan, M. T. (2021) Identification of Tobacco Crop Based on Machine Learning for a Precision Agricultural Sprayer, IEEE Access, 9, 23814-23825.

Yalei, W. Lijun, Q. & Hao, Z. (2018). Design and experiment of remote intelligent spray control system based on embedded internet. Trans. Chin. Soc. Agric. Eng. 34(20), 28–35.

Yang, Q. Huang, G. Shi, X. He, M. Ahmad, I. Zhao, X. & Addy, M. (2020) Design of a control system for a mini-automatic transplanting machine of plug seedling, Computers and Electronics in Agriculture, 169.

Zhang, S. Wang, Y. Zhu, Z. Li, Z. Du, Y. & Mao, E. (2018). Tractor Path Tracking Control Based on Binocular Vision. Information Processing in Agriculture, 5, 422-432.

Zhao, H. Zhou, S. Chen, W. Miao, Z. & Liu, Y. H. (2021). Modeling and Motion Control of Industrial Tractor–Trailers Vehicles Using Force Compensation, IEEE/ASME Transactions on Mechatronics, 26(2), 645-656.

Publicado

20/12/2021

Cómo citar

ARANHA, T. S. .; MOLLO NETO, M. .; RODRIGUEIRO, M. M. da S. .; MORAIS, F. J. de O. .; SANTOS, P. S. B. dos . Instrumentación aplicada en máquinas agrícolas: revisión sistemática de la literatura. Research, Society and Development, [S. l.], v. 10, n. 17, p. e22101724247, 2021. DOI: 10.33448/rsd-v10i17.24247. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24247. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías