Ocurrencias y aplicaciones del consorcio de microalgas: una revisión sistemática de la literatura
DOI:
https://doi.org/10.33448/rsd-v11i1.24421Palabras clave:
Consorcio; Microalgas-microalgas; Microalgas-bacterias; Producción de biomasa; Tratamiento de aguas residuales; Bioactivos.Resumen
Esta revisión sistemática tuvo como objetivo investigar la literatura sobre la ocurrencia y aplicaciones de consorcios de microalgas, con el fin de buscar artículos en revistas internacionales indexadas en la base de datos Scopus. Para mapear variables en la literatura, se utilizó la Revisión de Literatura Sistemática (SLR), como las publicaciones más citadas, la evolución de las publicaciones y las revistas más relevantes. La búsqueda extrajo 278 artículos a junio de 2020. Las publicaciones se redujeron a 224 artículos que componían los dos tipos de consorcio propuestos para investigación: 92 artículos del consorcio Microalga-Microalga (MM) y 132 artículos del consorcio Microalga-Bacteria (MB). También se investigaron artículos sobre consorcios en el tratamiento de efluentes, que constituyeron 116 publicaciones de la muestra. Los resultados de la encuesta muestran que los estudios referentes al consorcio de microalgas han ganado protagonismo en los últimos años. La actuación de los consorcios en el tratamiento de efluentes y el procesamiento de biomasa de microalgas en la cuantificación de bioactivos de interés se destacó como un tema recurrente en la literatura. Dadas las posibles aplicaciones, la literatura reporta el uso de biomasa del consorcio de microalgas generadas durante el proceso de tratamiento de efluentes por su potencial en la producción de biocombustibles. Por otro lado, la implementación de sistemas de cultivo expansivos y otras alternativas para la aplicación de biomasa aún están poco abordadas en la literatura y se consideran vacíos de investigación.
Citas
Abu-Ghosh, S., Dubinsky, Z., Verdelho, V., & Iluz, D. (2021). Unconventional high-value products from microalgae: A review. Bioresource Technology, 329, 124895. https://doi.org/10.1016/J.BIORTECH.2021.124895
Bornmann, L. and Leydesdorff, L. (2013). The validation of (advanced) bibliometric indicators through peer assessments: A comparative study using data from InCites and F1000. Journal of informetrics, 7(2), pp.286-291.
Chew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., & Chang, J. S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332–344. https://doi.org/10.1016/J.JTICE.2018.05.039
Chiu, S. Y., Kao, C. Y., Chen, T. Y., Chang, Y. bin, Kuo, C. M., & Lin, C. S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184, 179–189. https://doi.org/10.1016/J.BIORTECH.2014.11.080
Chapin Iii, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E. and Mack, M.C. (2000). Consequences of changing biodiversity. Nature, 405(6783), pp.234-242.
Chinnasamy S, Bhatnagar A, Claxton R, Das KC. Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using De-Bashan, L.E. & Bashan, Y., (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource technology, 101(6), pp.1611-1627.
Dayana Priyadharshini, S., Suresh Babu, P., Manikandan, S., Subbaiya, R., Govarthanan, M., & Karmegam, N. (2021). Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. Environmental Pollution, 290, 117989. https://doi.org/10.1016/J.ENVPOL.2021.117989
Denyer, D., Tranfield D. Producing a Systematic Review. In: The Sage 49 Handbook of Organizational Research Methods. Thousand Oaks: Sage Publications Ltd., 2009. p. 671–689.
Fakhimi, N., Gonzalez-Ballester, D., Fernández, E., Galván, A., & Dubini, A. (2020). Algae-Bacteria Consortia as a Strategy to Enhance H2 Production. Cells, 9(6), 1353. MDPI AG. Retrieved from http://dx.doi.org/10.3390/cells9061353
Fallahi, A., Rezvani, F., Asgharnejad, H., Khorshidi, E., Hajinajaf, N., & Higgins, B. (2021). Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere, 272, 129878. https://doi.org/10.1016/J.CHEMOSPHERE.2021.129878
Fu P., Secundo F. (2016) Algae and their bacterial consortia for soil bioremediation, Chemical Engineering Transactions, 49, 427-432 DOI: 10.3303/CET1649072
Fu, Y., Chen, T., Chen, S. H. Y., Liu, B., Sun, P., Sun, H., & Chen, F. (2021). The potentials and challenges of using microalgae as an ingredient to produce meat analogues. Trends in Food Science & Technology, 112, 188–200. https://doi.org/10.1016/J.TIFS.2021.03.050
Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2016). Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production. Bioresource Technology, 200, 279–286. https://doi.org/10.1016/J.BIORTECH.2015.10.023
Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403–415. https://doi.org/10.1016/J.ALGAL.2016.11.008
González-Gálvez, O. D., Nava Bravo, I., Cuevas-García, R., Velásquez-Orta, S. B., Harvey, A. P., Cedeño Caero, L., & Orta Ledesma, M. T. (2020). Bio-oil production by catalytic solvent liquefaction from a wild microalgae consortium. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00716-y
Hernández, D., Riaño, B., Coca, M., & García-González, M. C. (2013). Treatment of agro-industrial wastewater using microalgae–bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresource Technology, 135, 598–603. https://doi.org/10.1016/J.BIORTECH.2012.09.029
Hossain, N., & Mahlia, T. (2019) Progress in physicochemical parameters of microalgae Cultivation for biofuel production. Critical Reviews in Biotechnology, 39(6), 835–859..
Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1), 54–67. https://doi.org/10.1016/J.BIOTECHADV.2017.09.009
Hussain, F., Shah, S. Z., Ahmad, H., Abubshait, S. A., Abubshait, H. A., Laref, A., Manikandan, A., Kusuma, H. S., & Iqbal, M. (2021). Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review. Renewable and Sustainable Energy Reviews, 137, 110603. https://doi.org/10.1016/J.RSER.2020.110603
Ishika, T., Moheimani, N. R., & Bahri, P. A. (2017). Sustainable saline microalgae co-cultivation for biofuel production: A critical review. Renewable and Sustainable Energy Reviews, 78, 356–368. https://doi.org/10.1016/J.RSER.2017.04.110
Juneja, A.; Ceballos, R.M. & Murthy, G.S. (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, v. 6, n. 9, p. 4607-4638.
Katiyar, R., Gurjar, B. R., Biswas, S., Pruthi, V., Kumar, N., & Kumar, P. (2017). Microalgae: An emerging source of energy based bio-products and a solution for environmental issues. Renewable and Sustainable Energy Reviews, 72, 1083–1093. https://doi.org/10.1016/J.RSER.2016.10.028
Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele University, 33(TR/SE-0401), 28. http://doi.org/10.1.1.122.3308
Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H. Q., Muñoz, R., & Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology, 241, 1127–1137. https://doi.org/10.1016/J.BIORTECH.2017.06.054-1093. 2017.
Magdouli, S., Brar, S. K., & Blais, J. F. (2016). Co-culture for lipid production: Advances and challenges. Biomass and Bioenergy, 92, 20–30. https://doi.org/10.1016/J.BIOMBIOE.2016.06.003
Manzoor, Maleeha & Ma, Ruijuan & Shakir, Hafiz & Tabssum, Fouzia & Qazi, Javed. (2016). Microalgal-bacterial consortium: A cost-effective approach of wastewater treatment in Pakistan. Punjab university journal of zoology. 31. 307-320.
Mata, T. M., Martins, A. A., & Caetano, N. S. (2010b). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/J.RSER.2009.07.020
Morais Junior, W. G., Gorgich, M., Corrêa, P. S., Martins, A. A., Mata, T. M., & Caetano, N. S. (2020). Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture, 528, 735562. https://doi.org/10.1016/J.AQUACULTURE.2020.735562
Moreno-Garcia, L., Adjallé, K., Barnabé, S., & Raghavan, G. S. V. (2017). Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability. Renewable and Sustainable Energy Reviews, 76, 493–506. https://doi.org/10.1016/J.RSER.2017.03.024
Mujtaba, Ghulam, & Lee, Kisay. (2016). Advanced Treatment of Wastewater Using Symbiotic Co-culture of Microalgae and Bacteria. Applied Chemistry for Engineering, 27(1), 1–9. https://doi.org/10.14478/ACE.2016.1002
Nath, A., Tiwari, P. K., Rai, A. K., & Sundaram, S. (2019). Evaluation of carbon capture in competent microalgal consortium for enhanced biomass, lipid, and carbohydrate production. 3 Biotech, 9(11), 1–15. https://doi.org/10.1007/s13205-019-1910-6
Padmaperuma, G; Kapoore, R.V.; = Gilmour, D. J.; Vaidyanathan, S. (2018) Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing, Critical Reviews in Biotechnology, 38:5, 690-703, DOI: 10.1080/07388551.2017.1390728
Perera, Isiri & Subashchandrabose, Suresh & Kadiyala, Venkateswarlu & Naidu, Ravi & Mallavarapu, Megharaj. (2018). Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Applied Microbiology and Biotechnology. 102. 10.1007/s00253-018-9192-1.
Perera, I. A., Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K., Naidu, R., & Megharaj, M. (2019). Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Critical Reviews in Biotechnology, 39(5), 709–731. https://doi.org/10.1080/07388551.2019.1597828
Pires, J. C.M.; Alvim-Ferraz, M. C.M; Martins, F.G. (2017). Photobioreactor design for microalgae production through computational fluid dynamics: A review. Renewable and Sustainable Energy Reviews, v. 79, p. 248-254.
Ramanan, R., Kim, B.H., Cho, D.H., Oh, H.M. and Kim, H.S., 2016. Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnology advances, 34(1), pp.14-29.
Rashid,N., Ryu, A.E., Jeong, K.J., Lee, B. , Chang, Y. Co-cultivation of two freshwater microalgae species to improve biomass productivity and biodiesel production, Energy Conversion and Management, 196, pp. 640-648, 2019. https://doi.org/10.1016/j.enconman.2019.05.106.
Rossi S. , Sforza E. , Pastore M. , Bellucci M. , Casagli F. , F Marazzi. & Ficara E. .Photo-respirometry to shed light on microalgae-bacteria consortia—a review. Rev Environ Sci Biotechnol 19, 43–72 (2020). https://doi.org/10.1007/s11157-020-09524-2
Smith, T.P., Thomas, T.J., García-Carreras, B., Sal, S., Yvon-Durocher, G., Bell, T. & Pawar, S., (2019). Community-level respiration of prokaryotic microbes may rise with global warming. Nature communications, 10(1), pp.1-11.
Sorz, J., Glänzel, W., Ulrych, U., Gumpenberger C. & Gorraiz J. (2020). Research strengths identified by esteem and bibliometric indicators: a case study at the University of Vienna. Scientometrics 125, 1095–1116.
Sudhakar, M. P., Kumar, B. R., Mathimani, T., & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. Journal of Cleaner Production, 228, 1320–1333. https://doi.org/10.1016/J.JCLEPRO.2019.04.287
Vieira de Mendonça, H., Assemany, P., Abreu, M., Couto, E., Maciel, A. M., Duarte, R. L., Barbosa dos Santos, M. G., & Reis, A. (2021). Microalgae in a global world: New solutions for old problems? Renewable Energy, 165, 842–862. https://doi.org/10.1016/J.RENENE.2020.11.014
Wu, J. Y., Lay, C. H., Chiong, M. C., Chew, K. W., Chen, C. C., Wu, S. Y., Zhou, D., Kumar, G., & Show, P. L. (2020). Immobilized Chlorella species mixotrophic cultivation at various textile wastewater concentrations. Journal of Water Process Engineering, 38, 101609. https://doi.org/10.1016/J.JWPE.2020.101609
Zhang, B., Li, W., Guo, Y., Zhang, Z., Shi, W., Cui, F., Lens, P. N. L., & Tay, J. H. (2020). Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews, 118,109563. https://doi.org/10.1016/j.rser.2019.109563
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Maria Helena Juvito da Costa; Nyelson da Silva Nonato; Sandra Naomi Morioka; Mariana Moura Nóbrega; Sharline Florentino de Melo Santos; Darlan Azevedo Pereira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.