Efecto de diferentes polifenoles frente a la neurotoxicidad inducida por ácido quinolínico en células gliales U87-MG

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i1.24865

Palabras clave:

neurodegeneración; Neurodegeneración; ácido quinolínico; Ácido quinolínico; polifenoles; Polifenoles; estrés oxidativo; Estrés oxidativo.

Resumen

Enfermedades neurodegenerativas (EN) son transtornos altamente debilitantes relacionados con el envejecimento y la disfunción mitocondrial, estrés oxidativo y nitrosativo (EON) están asociados a la aparición del cuadro clínico. Las mitocondrias se destacan como organelas cruciales en la interacción entre neurodegeneración y neuroinflamación, y polifenoles son considerados como medicamentos prometedores dirigidos a las mitocondrias. Compuestos fenólicos pueden regular las mitocondrias controlando su estado redox, función y sistema de apoptosis. En este trabajo, fue investigado el potencial neuroprotetor de los extractos de Araucaria angustifolia (AAE) y Camellia sinensis (GT), y seis compuestos aislados (resveratrol, ácido gálico, ácido elágico, catequina, epicatequina e proantocianidinas) em um modelo de neurodegeneración utilizando ácido quinolínico (AQ). Células gliales U87-MG fueran pretratadas por 1 hora con AAE o GT o un de los compuestos aislados, y, después, expuestas al AQ por 24 horas. Las células expuestas al AQ presentaran viabilidad disminuida, alta producción de especies reactivas de oxígeno (EROs), reducción de la polarización  mitocondrial y aumento de la respuesta inflamatoria. Apesar de los resultados similares encontrados para el GT y el AAE, este ultimo se destacó, siendo capaz de prevenir todos los parámetros testados en este trabajo. En conclusión, se sugiere que el AAE podrida ser un agente de prevención contra las EN relacionadas con la disfunción mitochindrial asociada al EON.

Citas

Bader, V., & Winklhofer, K. F. (2020). Mitochondria at the interface between neurodegeneration and neuroinflammation. Seminars in Cell and Developmental Biology, 99, 1–9.

Basílio, F. S., Santos, J. M. & Branco, C. S. (2021). O papel do estresse oxidativo na Doença de Crohn: Uma revisão narrativa. Research, Society and Development, 10(4), 1–15.

Bhat, A. H., Dar, K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A., & Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine and Pharmacotherapy, 74, 101–110.

Biernacki, T., Sandi, D., Bencsik, K., & Vécsei, L. (2020). Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells, 9(6), 1–35.

Branco, C. S., Lima, É. D., Rodrigues, T. S., Scheffel, T. B., Scola, G., Laurino, C. C. F. C., Moura, S., & Salvador, M. (2015). Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells. Chemico-Biological Interactions, 231, 108–118.

Branco, C. S., Duong, A., Machado, A. K., Wu, A., Scola, G., Andreazza, A. C., & Salvador, M. (2019). Araucaria angustifolia (Bertol.) Kuntze has neuroprotective action through mitochondrial modulation in dopaminergic SH-SY5Y cells. Molecular Biology Reports, 46(6), 6013–6025.

Bulck, M. Van, Sierra-Magro, A., Alarcon-Gil, J., Perez-Castillo, A., & Morales-Garcia, J. A. (2019). Novel approaches for the treatment of Alzheimer's and Parkinson's disease. International Journal of Molecular Sciences, 20(3), 1–36.

Castro-Portuguez, R., & Sutphin, G. L. (2020). Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Experimental Gerontology, 132, 1–14.

Chen, D., Zhang, T., & Lee, T. H. (2020). Cellular mechanisms of melatonin: Insight from neurodegenerative diseases. Biomolecules, 10(8), 1–26.

Chu, C. T. (2019). Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiology of Disease, 122, 23–34.

Colle, R., Masson, P., Verstuyft, C., Fève, B., Werner, E., Boursier-Neyret, C., Walther, B., David, D. J., Boniface, B., Falissard, B., Chanson, P., Corruble, E., & Becquemont, L. (2020). Peripheral tryptophan, serotonin, kynurenine, and their metabolites in major depression: A case–control study. Psychiatry and Clinical Neurosciences, 74(2), 112–117.

Colon, M., & Nerín, C. (2016). Synergistic, antagonistic and additive interactions of green tea polyphenols. European Food Research and Technology, 242(2), 211–220.

Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in Nutrition, 5, 1–9.

Dalton, S. (2015). Linking the Cell Cycle to Cell Fate Decisions. Trends in Cell Biology, 25(10), 592–600.

Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants and Redox Signaling, 18(14), 1818–1892.

Denizot, F & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271-277.

Deuschl, G., Beghi, E., Fazekas, F., Varga, T., Christoforidi, K. A., Sipido, E., Bassetti, C. L., Vos, T., & Feigin, V. L. (2020). The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017. The Lancet Public Health, 5(10), 551–567.

Devi, S., Kumar, V., Singh, S. K., Dubey, A. K., & Kim, J. J. (2021). Flavonoids: Potential candidates for the treatment of neurodegenerative disorders. Biomedicines, 9(2), 1–20.

Di Ferdinando, M., Brunetti, C., Agati, G., & Tattini, M. (2014). Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas. Environmental and Experimental Botany, 103, 107–116.

Erkkinen, M. G., Kim, M. O., & Geschwind, M. D. (2018). Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 10(4), 1–44.

Feng, W., Wang, Y., Liu, Z. Q., Zhang, X., Han, R., Miao, Y. Z., & Qin, Z. H. (2017). Microglia activation contributes to quinolinic acid-induced neuronal excitotoxicity through TNF-α. Apoptosis, 22(5), 696–709.

Frozza, C. O. S., Santos, D. A., Rufatto, L. C., Minetto, L., Scariot, F. J., Echeverrigaray, S., Pich, C. T., Moura, S., Padilha, F. F., Borsuk, S., Savegnago, L., Collares, T., Seixas, F. K., Dellagostin, O., Roesch-Ely, M., & Henriques, J. A. P. (2017). Antitumor activity of Brazilian red propolis fractions against Hep-2 cancer cell line. Biomedicine and Pharmacotherapy, 91, 951–963.

Ghasemi, M., Mayasi, Y., Hannoun, A., Eslami, S. M., & Carandang, R. (2018). Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience, 376, 48–71.

Golpich, M., Amini, E., Mohamed, Z., Azman Ali, R., Mohamed Ibrahim, N., & Ahmadiani, A. (2017). Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neuroscience and Therapeutics, 23(1), 5–22.

Gorzynik-Debicka, M., Przychodzen, P., Cappello, F., Kuban-Jankowska, A., Gammazza, A. M., Knap, N., Wozniak, M., & Gorska-Ponikowska, M. (2018). Potential health benefits of olive oil and plant polyphenols. International Journal of Molecular Sciences, 19(3), 1–13.

Green, L. C., Ruiz de Luzuriaga, K., Wagner, D. A., Rand, W., Istfan, N., Young, V. R., & Tannenbaum, S. R. (1981). Nitrate biosynthesis in man. Proceedings of the National Academy of Sciences of the United States of America, 78(12), 7764-7768.

Hano, C., & Tungmunnithum, D. (2020). Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines, 7(5), 1–9.

Islam, M. T. (2017). Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurological Research, 39(1), 73–82.

Johnson, J., Mercado-Ayon, E., Mercado-Ayon, Y., Dong, Y. N., Halawani, S., Ngaba, L., & Lynch, D. R. (2021). Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Archives of Biochemistry and Biophysics, 702, 1–37.

Limana Da Silveira, T., Zamberlan, D. C., Arantes, L. P., Lopes Machado, M., Cruz Da Silva, T., De Freitas Câmara, D., Santamaría, A., Aschner, M., Alexandre, F., & Soares, A. (2018). Quinolinic Acid and glutamatergic neurodegeneration in Caenorhabditis elegans. Neurotoxicology, 67, 94–101.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.

Maddison, D. C., & Giorgini, F. (2015). The kynurenine pathway and neurodegenerative disease. Seminars in Cell and Developmental Biology, 40, 134–141.

McGrattan, A. M., McGuinness, B., McKinley, M. C., Kee, F., Passmore, P., Woodside, J. V., & McEvoy, C. T. (2019). Diet and Inflammation in Cognitive Ageing and Alzheimer’s Disease. Current Nutrition Reports, 8(2), 53–65.

Musial, C., Kuban-Jankowska, A., & Gorska-Ponikowska, M. (2020). Beneficial Properties of Green Tea Catechins. International Journal of Molecular Sciences, 2(5), 1-11.

Naoi, M., Wu, Y., Shamoto-Nagai, M., & Maruyama, W. (2019). Molecular Sciences Review Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. International Journal of Molecular Sciences, 20(10), 1–31.

Norris, S. P., Likanje, M. F. N., & Andrews, J. A. (2020). Amyotrophic lateral sclerosis: update on clinical management. Current Opinion in Neurology, 33(5), 641–648.

Nunnari, J., & Suomalainen, A. (2012). Mitochondria: In sickness and in health. Cell, 148(6), 1145–1159.

Pei, R., Liu, X., & Bolling, B. (2020). Flavonoids and gut health. Current Opinion in Biotechnology, 61, 153–159.

Pierozan, P., Colín-González, A. L., Biasibetti, H., da Silva, J. C., Wyse, A., Wajner, M., & Santamaria, A. (2018). Toxic Synergism Between Quinolinic Acid and Glutaric Acid in Neuronal Cells Is Mediated by Oxidative Stress: Insights to a New Toxic Model. Molecular Neurobiology, 55(6), 5362–5376.

Potì, F., Santi, D., Spaggiari, G., Zimetti, F., & Zanotti, I. (2019). Polyphenol health effects on cardiovascular and neurodegenerative disorders: A review and meta-analysis. International Journal of Molecular Sciences, 20(2), 1–26.

Radi, E., Formichi, P., Battisti, C., & Federico, A. (2014). Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer’s Disease, 42, 125–152.

Rathnayake, D., Chang, T., & Udagama, P. (2019). Selected serum cytokines and nitric oxide as potential multi-marker biosignature panels for Parkinson disease of varying durations: A case-control study. BMC Neurology, 19(1), 1–10.

Rekatsina, M., Paladini, A., Piroli, A., Zis, P., Pergolizzi, J. V., & Varrassi, G. (2020). Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Advances in Therapy, 37, 113–139.

Renaud, J., & Martinoli, M. G. (2019). Considerations for the use of polyphenols as therapies in neurodegenerative diseases. International Journal of Molecular Sciences, 20(8), 1–25.

Russo, G. L., Spagnuolo, C., Russo, M., Tedesco, I., Moccia, S., & Cervellera, C. (2020). Mechanisms of aging and potential role of selected polyphenols in extending healthspan. Biochemical Pharmacology, 173, 1–43.

Salim, S. (2017). Oxidative stress and the central nervous system. Journal of Pharmacology and Experimental Therapeutics, 360(1), 201–205.

Sas, K., Szabó, E., & Vécsei, L. (2018). Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules, 23(1), 1–28.

Slanzi, A., Iannoto, G., Rossi, B., Zenaro, E., & Constantin, G. (2020). In vitro Models of Neurodegenerative Diseases. Frontiers in Cell and Developmental Biology, 8, 1–18.

Song, H., Sieurin, J., Wirdefeldt, K., Pedersen, N. L., Almqvist, C., Larsson, H., Valdimarsdóttir, U. A., & Fang, F. (2020). Association of Stress-Related Disorders with Subsequent Neurodegenerative Diseases. JAMA Neurology, 77(6), 700–709.

Stephenson, J., Nutma, E., Valk, P., & Amor, S. (2018). Inflammation in CNS neurodegenerative diseases. Immunology, 154(2), 204–219.

Subhramanyam, C. S., Wang, C., Hu, Q., & Dheen, S. T. (2019). Microglia-mediated neuroinflammation in neurodegenerative diseases. Seminars in Cell and Developmental Biology, 94, 112–120.

Sundaram, G., Brew, B. J., Jones, S. P., Adams, S., Lim, C. K., & Guillemin, G. J. (2014). Quinolinic acid toxicity on oligodendroglial cells: relevance for multiple sclerosis and therapeutic strategies. Journal of Neuroinflammation, 11(1), 1–11.

Tomas-Barberan, F. A. & Yang, X. (2018). Tea is a Significant Dietary Source of Ellagitannins and Ellagic Acid. Journal of Agricultural and Food Chemistry, 67(19), 5394-5404.

Török, N., Tanaka, M., & Vécsei, L. (2020). Searching for peripheral biomarkers in neurodegenerative diseases: The tryptophan-kynurenine metabolic pathway. International Journal of Molecular Sciences, 21(24), 1–24

Tse, J. K. Y. (2017). Gut Microbiota, Nitric Oxide, and Microglia as Prerequisites for Neurodegenerative Disorders. ACS Chemical Neuroscience, 8(7), 1438–1447.

Visentin, A. P. V., Colombo, R., Scotton, E., Fracasso, D. S., Da Rosa, A. R., Branco, C. S., & Salvador, M. (2020). Targeting Inflammatory-Mitochondrial Response in Major Depression: Current Evidence and Further Challenges. Oxidative Medicine and Cellular Longevity, 2020, 1–20.

Wu, Y., Chen, M., & Jiang, J. (2019). Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion, 49, 35–45.

Zádor, F., Joca, S., Nagy-Grócz, G., Dvorácskó, S., Szücs, E., Tömböly1, C., Benyhe, S., & Vécsei, L. (2021). Pro-Inflammatory Cytokines: Potential Links between the Endocannabinoid System and the Kynurenine Pathway in Depression. International Journal of Molecular Sciences, 22(11), 1–19.

Zindel, J., & Kubes, P. (2020). DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annual Review of Pathology: Mechanisms of Disease, 15, 493–518.

Publicado

06/01/2022

Cómo citar

SANTOS, J. M. dos .; VISENTIN, A. P. V. .; SCARIOT, F. J. .; ECHEVERRIGARAY, S. .; SALVADOR, M. .; BRANCO, C. S. . Efecto de diferentes polifenoles frente a la neurotoxicidad inducida por ácido quinolínico en células gliales U87-MG. Research, Society and Development, [S. l.], v. 11, n. 1, p. e28811124865, 2022. DOI: 10.33448/rsd-v11i1.24865. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24865. Acesso em: 27 sep. 2024.

Número

Sección

Ciencias de la salud